求助PDF
{"title":"A -D3模块和A -D4模块","authors":"Zhanmin Zhu","doi":"10.1155/2023/4148088","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi mathvariant=\"script\">A</mi>\n </math>\n </jats:inline-formula> be a class of some right <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>R</mi>\n </math>\n </jats:inline-formula>-modules that is closed under isomorphisms, and let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>M</mi>\n </math>\n </jats:inline-formula> be a right <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>R</mi>\n </math>\n </jats:inline-formula>-module. Then <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>M</mi>\n </math>\n </jats:inline-formula> is called <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi mathvariant=\"script\">A</mi>\n </math>\n </jats:inline-formula>-D3 if, whenever <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>N</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>K</mi>\n </math>\n </jats:inline-formula> are direct summands of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>M</mi>\n </math>\n </jats:inline-formula> with <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mi>M</mi>\n <mo>=</mo>\n <mi>N</mi>\n <mo>+</mo>\n <mi>K</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mi>M</mi>\n <mo>/</mo>\n <mi>K</mi>\n <mo>∈</mo>\n <mi mathvariant=\"script\">A</mi>\n </math>\n </jats:inline-formula>, then <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mi>N</mi>\n <mo>∩</mo>\n <mi>K</mi>\n </math>\n </jats:inline-formula> is also a direct summand of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mi>M</mi>\n </math>\n </jats:inline-formula>; <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <mi>M</mi>\n </math>\n </jats:inline-formula> is called an <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\">\n <mi mathvariant=\"script\">A</mi>\n </math>\n </jats:inline-formula>-D4 module, if whenever <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\">\n <mi>M</mi>\n <mo>=</mo>\n <mi>B</mi>\n <mo>⊕</mo>\n <mi>A</mi>\n </math>\n </jats:inline-formula> where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\">\n <mi>B</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\">\n <mi>A</mi>\n </math>\n </jats:inline-formula> are submodules of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M21\">\n <mi>M</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M22\">\n <mi>A</mi>\n <mo>∈</mo>\n <mi mathvariant=\"script\">A</mi>\n </math>\n </jats:inline-formula>, then every epimorphism <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M23\">\n <mi>f</mi>\n <mo>:</mo>\n <mi>B</mi>\n <mo>⟶</mo>\n <mi>A</mi>\n </math>\n </jats:inline-formula> splits. Several characterizations and properties of these classes of modules are investigated. As applications, some new characterizations of semisimple Artinian rings, quasi-Frobenius rings, von Neumann regular rings, semiregular rings, perfect rings, semiperfect rings, hereditary rings, semihereditary rings, and PP rings are given.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi mathvariant=\\\"script\\\">A</mi>\\n </math>-D3 Modules and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi mathvariant=\\\"script\\\">A</mi>\\n </math>-D4 Modules\",\"authors\":\"Zhanmin Zhu\",\"doi\":\"10.1155/2023/4148088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Let <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi mathvariant=\\\"script\\\">A</mi>\\n </math>\\n </jats:inline-formula> be a class of some right <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>R</mi>\\n </math>\\n </jats:inline-formula>-modules that is closed under isomorphisms, and let <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>M</mi>\\n </math>\\n </jats:inline-formula> be a right <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>R</mi>\\n </math>\\n </jats:inline-formula>-module. Then <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>M</mi>\\n </math>\\n </jats:inline-formula> is called <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mi mathvariant=\\\"script\\\">A</mi>\\n </math>\\n </jats:inline-formula>-D3 if, whenever <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mi>N</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mi>K</mi>\\n </math>\\n </jats:inline-formula> are direct summands of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <mi>M</mi>\\n </math>\\n </jats:inline-formula> with <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M12\\\">\\n <mi>M</mi>\\n <mo>=</mo>\\n <mi>N</mi>\\n <mo>+</mo>\\n <mi>K</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M13\\\">\\n <mi>M</mi>\\n <mo>/</mo>\\n <mi>K</mi>\\n <mo>∈</mo>\\n <mi mathvariant=\\\"script\\\">A</mi>\\n </math>\\n </jats:inline-formula>, then <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M14\\\">\\n <mi>N</mi>\\n <mo>∩</mo>\\n <mi>K</mi>\\n </math>\\n </jats:inline-formula> is also a direct summand of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M15\\\">\\n <mi>M</mi>\\n </math>\\n </jats:inline-formula>; <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M16\\\">\\n <mi>M</mi>\\n </math>\\n </jats:inline-formula> is called an <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M17\\\">\\n <mi mathvariant=\\\"script\\\">A</mi>\\n </math>\\n </jats:inline-formula>-D4 module, if whenever <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M18\\\">\\n <mi>M</mi>\\n <mo>=</mo>\\n <mi>B</mi>\\n <mo>⊕</mo>\\n <mi>A</mi>\\n </math>\\n </jats:inline-formula> where <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M19\\\">\\n <mi>B</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M20\\\">\\n <mi>A</mi>\\n </math>\\n </jats:inline-formula> are submodules of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M21\\\">\\n <mi>M</mi>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M22\\\">\\n <mi>A</mi>\\n <mo>∈</mo>\\n <mi mathvariant=\\\"script\\\">A</mi>\\n </math>\\n </jats:inline-formula>, then every epimorphism <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M23\\\">\\n <mi>f</mi>\\n <mo>:</mo>\\n <mi>B</mi>\\n <mo>⟶</mo>\\n <mi>A</mi>\\n </math>\\n </jats:inline-formula> splits. Several characterizations and properties of these classes of modules are investigated. As applications, some new characterizations of semisimple Artinian rings, quasi-Frobenius rings, von Neumann regular rings, semiregular rings, perfect rings, semiperfect rings, hereditary rings, semihereditary rings, and PP rings are given.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4148088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4148088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
A
-D3 Modules and
A
-D4 Modules
Let
A
be a class of some right
R
-modules that is closed under isomorphisms, and let
M
be a right
R
-module. Then
M
is called
A
-D3 if, whenever
N
and
K
are direct summands of
M
with
M
=
N
+
K
and
M
/
K
∈
A
, then
N
∩
K
is also a direct summand of
M
;
M
is called an
A
-D4 module, if whenever
M
=
B
⊕
A
where
B
and
A
are submodules of
M
and
A
∈
A
, then every epimorphism
f
:
B
⟶
A
splits. Several characterizations and properties of these classes of modules are investigated. As applications, some new characterizations of semisimple Artinian rings, quasi-Frobenius rings, von Neumann regular rings, semiregular rings, perfect rings, semiperfect rings, hereditary rings, semihereditary rings, and PP rings are given.