定义由d维物体投影生成的图像上的SO(d)-旋转动作:用几何VAEs进行姿态推理的应用

Nicolas Legendre, K. D. Duc, Nina Miolane
{"title":"定义由d维物体投影生成的图像上的SO(d)-旋转动作:用几何VAEs进行姿态推理的应用","authors":"Nicolas Legendre, K. D. Duc, Nina Miolane","doi":"10.48550/arXiv.2207.11582","DOIUrl":null,"url":null,"abstract":"Recent advances in variational autoencoders (VAEs) have enabled learning latent manifolds as compact Lie groups, such as SO(d). Since this approach assumes that data lies on a subspace that is homeomorphic to the Lie group itself, we here investigate how this assumption holds in the context of images that are generated by projecting a d-dimensional volume with unknown pose in SO(d). Upon examining different theoretical candidates for the group and image space, we show that the attempt to define a group action on the data space generally fails, as it requires more specific geometric constraints on the volume. Using geometric VAEs, our experiments confirm that this constraint is key to proper pose inference, and we discuss the potential of these results for applications and future work.","PeriodicalId":72637,"journal":{"name":"Colloques sur le traitement du signal et des images","volume":"5 1","pages":"329-332"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defining an action of SO(d)-rotations on images generated by projections of d-dimensional objects: Applications to pose inference with Geometric VAEs\",\"authors\":\"Nicolas Legendre, K. D. Duc, Nina Miolane\",\"doi\":\"10.48550/arXiv.2207.11582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in variational autoencoders (VAEs) have enabled learning latent manifolds as compact Lie groups, such as SO(d). Since this approach assumes that data lies on a subspace that is homeomorphic to the Lie group itself, we here investigate how this assumption holds in the context of images that are generated by projecting a d-dimensional volume with unknown pose in SO(d). Upon examining different theoretical candidates for the group and image space, we show that the attempt to define a group action on the data space generally fails, as it requires more specific geometric constraints on the volume. Using geometric VAEs, our experiments confirm that this constraint is key to proper pose inference, and we discuss the potential of these results for applications and future work.\",\"PeriodicalId\":72637,\"journal\":{\"name\":\"Colloques sur le traitement du signal et des images\",\"volume\":\"5 1\",\"pages\":\"329-332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloques sur le traitement du signal et des images\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.11582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloques sur le traitement du signal et des images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.11582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

变分自编码器(VAEs)的最新进展使得潜在流形可以作为紧凑的李群来学习,例如SO(d)。由于这种方法假设数据位于与李群本身同胚的子空间上,因此我们在这里研究如何在通过在SO(d)中投影具有未知姿态的d维体生成的图像的背景下保持这一假设。在研究了群和图像空间的不同理论候选者后,我们表明,在数据空间上定义群动作的尝试通常会失败,因为它需要对体积进行更具体的几何约束。使用几何vae,我们的实验证实了这种约束是正确姿态推理的关键,我们讨论了这些结果在应用和未来工作中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defining an action of SO(d)-rotations on images generated by projections of d-dimensional objects: Applications to pose inference with Geometric VAEs
Recent advances in variational autoencoders (VAEs) have enabled learning latent manifolds as compact Lie groups, such as SO(d). Since this approach assumes that data lies on a subspace that is homeomorphic to the Lie group itself, we here investigate how this assumption holds in the context of images that are generated by projecting a d-dimensional volume with unknown pose in SO(d). Upon examining different theoretical candidates for the group and image space, we show that the attempt to define a group action on the data space generally fails, as it requires more specific geometric constraints on the volume. Using geometric VAEs, our experiments confirm that this constraint is key to proper pose inference, and we discuss the potential of these results for applications and future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信