论Valiant的复杂性类的结构

IF 0.7 4区 数学
Peter Bürgisser
{"title":"论Valiant的复杂性类的结构","authors":"Peter Bürgisser","doi":"10.46298/dmtcs.260","DOIUrl":null,"url":null,"abstract":"In Valiant developed an algebraic analogue of the theory of NP-completeness for computations of polynomials over a field. We further develop this theory in the spirit of structural complexity and obtain analogues of well-known results by Baker, Gill, and Solovay, Ladner, and Schoning. We show that if Valiant's hypothesis is true, then there is a p -definable family, which is neither p -computable nor VNP -complete. More generally, we define the posets of p -degrees and c -degrees of p -definable families and prove that any countable poset can be embedded in either of them, provided Valiant's hypothesis is true. Moreover, we establish the existence of minimal pairs for VP in VNP . Over finite fields, we give a specific example of a family of polynomials which is neither VNP -complete nor p -computable, provided the polynomial hierarchy does not collapse. We define relativized complexity classes VP h and VNP h and construct complete families in these classes. Moreover, we prove that there is a p -family h satisfying VP h = VNP h .","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"1998-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"On the Structure of Valiant's Complexity Classes\",\"authors\":\"Peter Bürgisser\",\"doi\":\"10.46298/dmtcs.260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Valiant developed an algebraic analogue of the theory of NP-completeness for computations of polynomials over a field. We further develop this theory in the spirit of structural complexity and obtain analogues of well-known results by Baker, Gill, and Solovay, Ladner, and Schoning. We show that if Valiant's hypothesis is true, then there is a p -definable family, which is neither p -computable nor VNP -complete. More generally, we define the posets of p -degrees and c -degrees of p -definable families and prove that any countable poset can be embedded in either of them, provided Valiant's hypothesis is true. Moreover, we establish the existence of minimal pairs for VP in VNP . Over finite fields, we give a specific example of a family of polynomials which is neither VNP -complete nor p -computable, provided the polynomial hierarchy does not collapse. We define relativized complexity classes VP h and VNP h and construct complete families in these classes. Moreover, we prove that there is a p -family h satisfying VP h = VNP h .\",\"PeriodicalId\":55175,\"journal\":{\"name\":\"Discrete Mathematics and Theoretical Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"1998-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Theoretical Computer Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.260\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.46298/dmtcs.260","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

在1986年,Valiant发展了一种计算域上多项式的np完备理论的代数模拟。我们本着结构复杂性的精神进一步发展了这一理论,并获得了Baker、Gill、Solovay、Ladner和Schoning的著名结果的类似物。我们证明了如果Valiant的假设成立,那么存在一个p -可定义族,它既不是p -可计算的,也不是np -完全的。更一般地说,我们定义了p可定义族的p -度和c -度的偏序集,并证明了在Valiant的假设成立的情况下,任何可计数偏序集都可以嵌入其中。此外,我们还证明了VNP中VP的极小对的存在性。在有限域上,我们给出了一个多项式族的具体例子,它既不是VNP完全的,也不是p可计算的,只要多项式层次结构不崩溃。我们定义了相对复杂性类VP h和vpnp h,并在这些类中构造了完备族。此外,我们还证明了p族h满足VP h = VNP h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Structure of Valiant's Complexity Classes
In Valiant developed an algebraic analogue of the theory of NP-completeness for computations of polynomials over a field. We further develop this theory in the spirit of structural complexity and obtain analogues of well-known results by Baker, Gill, and Solovay, Ladner, and Schoning. We show that if Valiant's hypothesis is true, then there is a p -definable family, which is neither p -computable nor VNP -complete. More generally, we define the posets of p -degrees and c -degrees of p -definable families and prove that any countable poset can be embedded in either of them, provided Valiant's hypothesis is true. Moreover, we establish the existence of minimal pairs for VP in VNP . Over finite fields, we give a specific example of a family of polynomials which is neither VNP -complete nor p -computable, provided the polynomial hierarchy does not collapse. We define relativized complexity classes VP h and VNP h and construct complete families in these classes. Moreover, we prove that there is a p -family h satisfying VP h = VNP h .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
14.30%
发文量
39
期刊介绍: DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network. Sections of DMTCS Analysis of Algorithms Automata, Logic and Semantics Combinatorics Discrete Algorithms Distributed Computing and Networking Graph Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信