量子假设检验中的强逆和斯坦引理

T. Ogawa, H. Nagaoka
{"title":"量子假设检验中的强逆和斯坦引理","authors":"T. Ogawa, H. Nagaoka","doi":"10.1142/9789812563071_0003","DOIUrl":null,"url":null,"abstract":"The hypothesis testing problem for two quantum states is treated. We show a new inequality between the errors of the first kind and the second kind, which complements the result of Hiai and Petz (1991) to establish the quantum version of Stein's lemma. The inequality is also used to show a bound on the probability of errors of the first kind when the power exponent for the probability of errors of the second kind exceeds the quantum relative entropy, which yields the strong converse in quantum hypothesis testing. Finally, we discuss the relation between the bound and the power exponent derived by Han and Kobayashi (1989) in classical hypothesis testing.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"25 1","pages":"2428-2433"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"330","resultStr":"{\"title\":\"Strong converse and Stein's lemma in quantum hypothesis testing\",\"authors\":\"T. Ogawa, H. Nagaoka\",\"doi\":\"10.1142/9789812563071_0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hypothesis testing problem for two quantum states is treated. We show a new inequality between the errors of the first kind and the second kind, which complements the result of Hiai and Petz (1991) to establish the quantum version of Stein's lemma. The inequality is also used to show a bound on the probability of errors of the first kind when the power exponent for the probability of errors of the second kind exceeds the quantum relative entropy, which yields the strong converse in quantum hypothesis testing. Finally, we discuss the relation between the bound and the power exponent derived by Han and Kobayashi (1989) in classical hypothesis testing.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"25 1\",\"pages\":\"2428-2433\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"330\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789812563071_0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789812563071_0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 330

摘要

讨论了双量子态的假设检验问题。我们展示了第一类和第二类误差之间的一个新的不等式,它补充了Hiai和Petz(1991)建立Stein引理的量子版本的结果。利用该不等式给出了当第二类误差概率的幂指数超过量子相对熵时第一类误差概率的界,从而得到量子假设检验中的强逆性。最后,我们讨论了经典假设检验中由Han和Kobayashi(1989)导出的界与幂指数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong converse and Stein's lemma in quantum hypothesis testing
The hypothesis testing problem for two quantum states is treated. We show a new inequality between the errors of the first kind and the second kind, which complements the result of Hiai and Petz (1991) to establish the quantum version of Stein's lemma. The inequality is also used to show a bound on the probability of errors of the first kind when the power exponent for the probability of errors of the second kind exceeds the quantum relative entropy, which yields the strong converse in quantum hypothesis testing. Finally, we discuss the relation between the bound and the power exponent derived by Han and Kobayashi (1989) in classical hypothesis testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信