T. Takeshita, Takuma Iwasaki, E. Higurashi, Tatsuya Miyazaki, R. Sawada
{"title":"纳米压印技术在旋转式微编码器光栅刻度上的应用","authors":"T. Takeshita, Takuma Iwasaki, E. Higurashi, Tatsuya Miyazaki, R. Sawada","doi":"10.1109/OMN.2013.6659087","DOIUrl":null,"url":null,"abstract":"Using nano-imprint technology we have developed a rotary diffraction grating scale, which is used for micro rotary encoding. The off-center error between the center of the trough-hole for a rotational axis and the center of the high-precision micro-pattern on the periphery of the scale is less than 3 μm because we are able to shape the through-hole and the grating pattern simultaneously. The use of nano-imprinting is epoch-making, in view of the traditionally poor centering precision of grating scale through-holes fabricated using the conventional photolithography coupled with machining of the through-hole.","PeriodicalId":6334,"journal":{"name":"2013 International Conference on Optical MEMS and Nanophotonics (OMN)","volume":"48 1","pages":"117-118"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of nano-imprint technology to grating scale for a rotary microencoder\",\"authors\":\"T. Takeshita, Takuma Iwasaki, E. Higurashi, Tatsuya Miyazaki, R. Sawada\",\"doi\":\"10.1109/OMN.2013.6659087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using nano-imprint technology we have developed a rotary diffraction grating scale, which is used for micro rotary encoding. The off-center error between the center of the trough-hole for a rotational axis and the center of the high-precision micro-pattern on the periphery of the scale is less than 3 μm because we are able to shape the through-hole and the grating pattern simultaneously. The use of nano-imprinting is epoch-making, in view of the traditionally poor centering precision of grating scale through-holes fabricated using the conventional photolithography coupled with machining of the through-hole.\",\"PeriodicalId\":6334,\"journal\":{\"name\":\"2013 International Conference on Optical MEMS and Nanophotonics (OMN)\",\"volume\":\"48 1\",\"pages\":\"117-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Optical MEMS and Nanophotonics (OMN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMN.2013.6659087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Optical MEMS and Nanophotonics (OMN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2013.6659087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of nano-imprint technology to grating scale for a rotary microencoder
Using nano-imprint technology we have developed a rotary diffraction grating scale, which is used for micro rotary encoding. The off-center error between the center of the trough-hole for a rotational axis and the center of the high-precision micro-pattern on the periphery of the scale is less than 3 μm because we are able to shape the through-hole and the grating pattern simultaneously. The use of nano-imprinting is epoch-making, in view of the traditionally poor centering precision of grating scale through-holes fabricated using the conventional photolithography coupled with machining of the through-hole.