具有经典重审策略和一般重审时间的M/G/1重审队列的扩展生成器和相关鞅

IF 0.7 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL
S. Meziani, T. Kernane
{"title":"具有经典重审策略和一般重审时间的M/G/1重审队列的扩展生成器和相关鞅","authors":"S. Meziani, T. Kernane","doi":"10.1017/S0269964821000541","DOIUrl":null,"url":null,"abstract":"Abstract A retrial queue with classical retrial policy, where each blocked customer in the orbit retries for service, and general retrial times is modeled by a piecewise deterministic Markov process (PDMP). From the extended generator of the PDMP of the retrial queue, we derive the associated martingales. These results are used to derive the conditional expected number of customers in the orbit in the transient regime.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"6 1","pages":"206 - 213"},"PeriodicalIF":0.7000,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended generator and associated martingales for M/G/1 retrial queue with classical retrial policy and general retrial times\",\"authors\":\"S. Meziani, T. Kernane\",\"doi\":\"10.1017/S0269964821000541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A retrial queue with classical retrial policy, where each blocked customer in the orbit retries for service, and general retrial times is modeled by a piecewise deterministic Markov process (PDMP). From the extended generator of the PDMP of the retrial queue, we derive the associated martingales. These results are used to derive the conditional expected number of customers in the orbit in the transient regime.\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"6 1\",\"pages\":\"206 - 213\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0269964821000541\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0269964821000541","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用分段确定性马尔可夫过程(PDMP)对具有经典重审策略的重审队列进行建模,其中轨道上的每个阻塞客户都重试服务,并且一般重审时间。从重试队列的PDMP的扩展生成器中,导出了相关的鞅。利用这些结果推导出了在瞬态状态下轨道上的条件期望顾客数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended generator and associated martingales for M/G/1 retrial queue with classical retrial policy and general retrial times
Abstract A retrial queue with classical retrial policy, where each blocked customer in the orbit retries for service, and general retrial times is modeled by a piecewise deterministic Markov process (PDMP). From the extended generator of the PDMP of the retrial queue, we derive the associated martingales. These results are used to derive the conditional expected number of customers in the orbit in the transient regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
18.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信