通过熵产生增强图像对比度

Mario Ferraro , Giuseppe Boccignone
{"title":"通过熵产生增强图像对比度","authors":"Mario Ferraro ,&nbsp;Giuseppe Boccignone","doi":"10.1016/j.rti.2004.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper a novel approach for image contrast enhancement is proposed. Employing a thermodynamical model to define local information content, the method derives a measure of local contrast which takes into account spatial structure across multiple scales. From this measure a local contrast map is computed, which is then applied to the image, giving rise to a selective enhancement of the original image. Here some applications to medical images will be presented as well as a comparison with other methods.</p></div>","PeriodicalId":101062,"journal":{"name":"Real-Time Imaging","volume":"10 4","pages":"Pages 229-238"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rti.2004.05.004","citationCount":"7","resultStr":"{\"title\":\"Image contrast enhancement via entropy production\",\"authors\":\"Mario Ferraro ,&nbsp;Giuseppe Boccignone\",\"doi\":\"10.1016/j.rti.2004.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper a novel approach for image contrast enhancement is proposed. Employing a thermodynamical model to define local information content, the method derives a measure of local contrast which takes into account spatial structure across multiple scales. From this measure a local contrast map is computed, which is then applied to the image, giving rise to a selective enhancement of the original image. Here some applications to medical images will be presented as well as a comparison with other methods.</p></div>\",\"PeriodicalId\":101062,\"journal\":{\"name\":\"Real-Time Imaging\",\"volume\":\"10 4\",\"pages\":\"Pages 229-238\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.rti.2004.05.004\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real-Time Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077201404000440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077201404000440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种增强图像对比度的新方法。采用热力学模型来定义局部信息内容,该方法推导出考虑到跨多个尺度的空间结构的局部对比度量。从这个度量中计算出一个局部对比度图,然后应用到图像上,从而产生对原始图像的选择性增强。这里将介绍一些在医学图像中的应用,并与其他方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image contrast enhancement via entropy production

In this paper a novel approach for image contrast enhancement is proposed. Employing a thermodynamical model to define local information content, the method derives a measure of local contrast which takes into account spatial structure across multiple scales. From this measure a local contrast map is computed, which is then applied to the image, giving rise to a selective enhancement of the original image. Here some applications to medical images will be presented as well as a comparison with other methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信