{"title":"完全正张量的非均质化","authors":"Jiawang Nie, Xindong Tang, Zi Yang, Suhan Zhong","doi":"10.3934/naco.2022037","DOIUrl":null,"url":null,"abstract":". A real symmetric tensor is completely positive (CP) if it is a sum of symmetric tensor powers of nonnegative vectors. We propose a dehomogenization approach for studying CP tensors. This gives new Moment-SOS relaxations for CP tensors. Detection for CP tensors and the linear conic optimization with CP tensor cones can be solved more efficiently by the deho- mogenization approach.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"9 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dehomogenization for completely positive tensors\",\"authors\":\"Jiawang Nie, Xindong Tang, Zi Yang, Suhan Zhong\",\"doi\":\"10.3934/naco.2022037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A real symmetric tensor is completely positive (CP) if it is a sum of symmetric tensor powers of nonnegative vectors. We propose a dehomogenization approach for studying CP tensors. This gives new Moment-SOS relaxations for CP tensors. Detection for CP tensors and the linear conic optimization with CP tensor cones can be solved more efficiently by the deho- mogenization approach.\",\"PeriodicalId\":44957,\"journal\":{\"name\":\"Numerical Algebra Control and Optimization\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algebra Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2022037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2022037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
. A real symmetric tensor is completely positive (CP) if it is a sum of symmetric tensor powers of nonnegative vectors. We propose a dehomogenization approach for studying CP tensors. This gives new Moment-SOS relaxations for CP tensors. Detection for CP tensors and the linear conic optimization with CP tensor cones can be solved more efficiently by the deho- mogenization approach.
期刊介绍:
Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.