基于深度神经网络的分类器平均精度最大化的最大优值学习方法

Kehuang Li, Zhen Huang, You-Chi Cheng, Chin-Hui Lee
{"title":"基于深度神经网络的分类器平均精度最大化的最大优值学习方法","authors":"Kehuang Li, Zhen Huang, You-Chi Cheng, Chin-Hui Lee","doi":"10.1109/ICASSP.2014.6854454","DOIUrl":null,"url":null,"abstract":"We propose a maximal figure-of-merit (MFoM) learning framework to directly maximize mean average precision (MAP) which is a key performance metric in many multi-class classification tasks. Conventional classifiers based on support vector machines cannot be easily adopted to optimize the MAP metric. On the other hand, classifiers based on deep neural networks (DNNs) have recently been shown to deliver a great discrimination capability in automatic speech recognition and image classification as well. However, DNNs are usually optimized with the minimum cross entropy criterion. In contrast to most conventional classification methods, our proposed approach can be formulated to embed DNNs and MAP into the objective function to be optimized during training. The combination of the proposed maximum MAP (MMAP) technique and DNNs introduces nonlinearity to the linear discriminant function (LDF) in order to increase the flexibility and discriminant power of the original MFoM-trained LDF based classifiers. Tested on both automatic image annotation and audio event classification, the experimental results show consistent improvements of MAP on both datasets when compared with other state-of-the-art classifiers without using MMAP.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"4503-4507"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"A maximal figure-of-merit learning approach to maximizing mean average precision with deep neural network based classifiers\",\"authors\":\"Kehuang Li, Zhen Huang, You-Chi Cheng, Chin-Hui Lee\",\"doi\":\"10.1109/ICASSP.2014.6854454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a maximal figure-of-merit (MFoM) learning framework to directly maximize mean average precision (MAP) which is a key performance metric in many multi-class classification tasks. Conventional classifiers based on support vector machines cannot be easily adopted to optimize the MAP metric. On the other hand, classifiers based on deep neural networks (DNNs) have recently been shown to deliver a great discrimination capability in automatic speech recognition and image classification as well. However, DNNs are usually optimized with the minimum cross entropy criterion. In contrast to most conventional classification methods, our proposed approach can be formulated to embed DNNs and MAP into the objective function to be optimized during training. The combination of the proposed maximum MAP (MMAP) technique and DNNs introduces nonlinearity to the linear discriminant function (LDF) in order to increase the flexibility and discriminant power of the original MFoM-trained LDF based classifiers. Tested on both automatic image annotation and audio event classification, the experimental results show consistent improvements of MAP on both datasets when compared with other state-of-the-art classifiers without using MMAP.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"4503-4507\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

我们提出了一个最大优点图(MFoM)学习框架来直接最大化平均精度(MAP), MAP是许多多类分类任务的关键性能指标。传统的基于支持向量机的分类器难以用于MAP度量的优化。另一方面,基于深度神经网络(dnn)的分类器在自动语音识别和图像分类方面也表现出了很强的识别能力。然而,深度神经网络通常采用最小交叉熵准则进行优化。与大多数传统的分类方法相比,我们提出的方法可以在训练过程中将dnn和MAP嵌入到待优化的目标函数中。提出的最大MAP (MMAP)技术与深度神经网络相结合,将非线性引入线性判别函数(LDF)中,以提高原始mfom训练的基于LDF的分类器的灵活性和判别能力。在自动图像标注和音频事件分类上进行了测试,实验结果表明,与不使用MMAP的其他最先进的分类器相比,MAP在这两个数据集上的改进是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A maximal figure-of-merit learning approach to maximizing mean average precision with deep neural network based classifiers
We propose a maximal figure-of-merit (MFoM) learning framework to directly maximize mean average precision (MAP) which is a key performance metric in many multi-class classification tasks. Conventional classifiers based on support vector machines cannot be easily adopted to optimize the MAP metric. On the other hand, classifiers based on deep neural networks (DNNs) have recently been shown to deliver a great discrimination capability in automatic speech recognition and image classification as well. However, DNNs are usually optimized with the minimum cross entropy criterion. In contrast to most conventional classification methods, our proposed approach can be formulated to embed DNNs and MAP into the objective function to be optimized during training. The combination of the proposed maximum MAP (MMAP) technique and DNNs introduces nonlinearity to the linear discriminant function (LDF) in order to increase the flexibility and discriminant power of the original MFoM-trained LDF based classifiers. Tested on both automatic image annotation and audio event classification, the experimental results show consistent improvements of MAP on both datasets when compared with other state-of-the-art classifiers without using MMAP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信