列表Viterbi训练算法及其在数据库关键字搜索中的应用

Silvia Rota, S. Bergamaschi, F. Guerra
{"title":"列表Viterbi训练算法及其在数据库关键字搜索中的应用","authors":"Silvia Rota, S. Bergamaschi, F. Guerra","doi":"10.1145/2063576.2063808","DOIUrl":null,"url":null,"abstract":"Hidden Markov Models (HMMs) are today employed in a variety of applications, ranging from speech recognition to bioinformatics. In this paper, we present the List Viterbi training algorithm, a version of the Expectation-Maximization (EM) algorithm based on the List Viterbi algorithm instead of the commonly used forward-backward algorithm. We developed the batch and online versions of the algorithm, and we also describe an interesting application in the context of keyword search over databases, where we exploit a HMM for matching keywords into database terms. In our experiments we tested the online version of the training algorithm in a semi-supervised setting that allows us to take into account the feedbacks provided by the users.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"12 1","pages":"1601-1606"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The list Viterbi training algorithm and its application to keyword search over databases\",\"authors\":\"Silvia Rota, S. Bergamaschi, F. Guerra\",\"doi\":\"10.1145/2063576.2063808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hidden Markov Models (HMMs) are today employed in a variety of applications, ranging from speech recognition to bioinformatics. In this paper, we present the List Viterbi training algorithm, a version of the Expectation-Maximization (EM) algorithm based on the List Viterbi algorithm instead of the commonly used forward-backward algorithm. We developed the batch and online versions of the algorithm, and we also describe an interesting application in the context of keyword search over databases, where we exploit a HMM for matching keywords into database terms. In our experiments we tested the online version of the training algorithm in a semi-supervised setting that allows us to take into account the feedbacks provided by the users.\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"12 1\",\"pages\":\"1601-1606\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063576.2063808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

隐马尔可夫模型(hmm)今天被用于各种应用,从语音识别到生物信息学。在本文中,我们提出了List Viterbi训练算法,这是一种基于List Viterbi算法的期望最大化(EM)算法,而不是常用的前向向后算法。我们开发了该算法的批处理和在线版本,我们还描述了一个有趣的应用程序,在数据库的关键字搜索上下文中,我们利用HMM将关键字匹配到数据库术语中。在我们的实验中,我们在半监督设置中测试了在线版本的训练算法,该设置允许我们考虑用户提供的反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The list Viterbi training algorithm and its application to keyword search over databases
Hidden Markov Models (HMMs) are today employed in a variety of applications, ranging from speech recognition to bioinformatics. In this paper, we present the List Viterbi training algorithm, a version of the Expectation-Maximization (EM) algorithm based on the List Viterbi algorithm instead of the commonly used forward-backward algorithm. We developed the batch and online versions of the algorithm, and we also describe an interesting application in the context of keyword search over databases, where we exploit a HMM for matching keywords into database terms. In our experiments we tested the online version of the training algorithm in a semi-supervised setting that allows us to take into account the feedbacks provided by the users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信