功能数据分类:小波方法

Chung Chang, R Todd Ogden, Yakuan Chen
{"title":"功能数据分类:小波方法","authors":"Chung Chang, R Todd Ogden, Yakuan Chen","doi":"10.1007/s00180-014-0503-4","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, several methods have been proposed to deal with functional data classification problems (e.g., one-dimensional curves or two- or three-dimensional images). One popular general approach is based on the kernel-based method, proposed by Ferraty and Vieu (2003). The performance of this general method depends heavily on the choice of the semi-metric. Motivated by Fan and Lin (1998) and our image data, we propose a new semi-metric, based on wavelet thresholding for classifying functional data. This wavelet-thresholding semi-metric is able to adapt to the smoothness of the data and provides for particularly good classification when data features are localized and/or sparse. We conduct simulation studies to compare our proposed method with several functional classification methods and study the relative performance of the methods for classifying positron emission tomography (PET) images.</p>","PeriodicalId":76660,"journal":{"name":"The Journal of speech and hearing disorders","volume":"4 1","pages":"1497-1513"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional Data Classification: A Wavelet Approach.\",\"authors\":\"Chung Chang, R Todd Ogden, Yakuan Chen\",\"doi\":\"10.1007/s00180-014-0503-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, several methods have been proposed to deal with functional data classification problems (e.g., one-dimensional curves or two- or three-dimensional images). One popular general approach is based on the kernel-based method, proposed by Ferraty and Vieu (2003). The performance of this general method depends heavily on the choice of the semi-metric. Motivated by Fan and Lin (1998) and our image data, we propose a new semi-metric, based on wavelet thresholding for classifying functional data. This wavelet-thresholding semi-metric is able to adapt to the smoothness of the data and provides for particularly good classification when data features are localized and/or sparse. We conduct simulation studies to compare our proposed method with several functional classification methods and study the relative performance of the methods for classifying positron emission tomography (PET) images.</p>\",\"PeriodicalId\":76660,\"journal\":{\"name\":\"The Journal of speech and hearing disorders\",\"volume\":\"4 1\",\"pages\":\"1497-1513\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of speech and hearing disorders\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-014-0503-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/6/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of speech and hearing disorders","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-014-0503-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/6/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们提出了多种方法来处理功能数据分类问题(如一维曲线或二维或三维图像)。一种流行的通用方法是基于核的方法,由 Ferraty 和 Vieu(2003 年)提出。这种通用方法的性能在很大程度上取决于半度量的选择。受 Fan 和 Lin(1998 年)以及我们的图像数据的启发,我们提出了一种新的基于小波阈值的半度量方法,用于对功能数据进行分类。这种小波阈值半度量能够适应数据的平滑度,在数据特征局部化和/或稀疏的情况下,能提供特别好的分类。我们进行了模拟研究,将我们提出的方法与几种功能分类方法进行了比较,并研究了这些方法在正电子发射断层扫描(PET)图像分类中的相对性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional Data Classification: A Wavelet Approach.

In recent years, several methods have been proposed to deal with functional data classification problems (e.g., one-dimensional curves or two- or three-dimensional images). One popular general approach is based on the kernel-based method, proposed by Ferraty and Vieu (2003). The performance of this general method depends heavily on the choice of the semi-metric. Motivated by Fan and Lin (1998) and our image data, we propose a new semi-metric, based on wavelet thresholding for classifying functional data. This wavelet-thresholding semi-metric is able to adapt to the smoothness of the data and provides for particularly good classification when data features are localized and/or sparse. We conduct simulation studies to compare our proposed method with several functional classification methods and study the relative performance of the methods for classifying positron emission tomography (PET) images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信