具有阻抗条件的无限Lipschitz边界声散射的存在唯一性和显界

IF 0.9 4区 数学 Q2 Mathematics
Thomas Baden-Riess
{"title":"具有阻抗条件的无限Lipschitz边界声散射的存在唯一性和显界","authors":"Thomas Baden-Riess","doi":"10.5186/aasfm.2020.4540","DOIUrl":null,"url":null,"abstract":"Abstract. We study a boundary value problem for the Helmholtz equation with an impedance boundary condition, in two and three dimensions, modelling the scattering of time harmonic acoustic waves by an unbounded rough surface. Via analysis of an equivalent variational formulation we prove this problem to be well-posed when: i) the boundary has the strong local Lipschitz property and the frequency is small; ii) the rough surface is the graph of a bounded Lipschitz function (with arbitrary frequency). An attractive feature of our results is that the bounds we derive, on the inf-sup constants of the sesquilinear forms, are explicit in terms of the wavenumber k, the geometry of the scatterer and the parameters describing the surface impedance.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence, uniqueness and explicit bounds for acoustic scattering by an infinite Lipschitz boundary with an impedance condition\",\"authors\":\"Thomas Baden-Riess\",\"doi\":\"10.5186/aasfm.2020.4540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We study a boundary value problem for the Helmholtz equation with an impedance boundary condition, in two and three dimensions, modelling the scattering of time harmonic acoustic waves by an unbounded rough surface. Via analysis of an equivalent variational formulation we prove this problem to be well-posed when: i) the boundary has the strong local Lipschitz property and the frequency is small; ii) the rough surface is the graph of a bounded Lipschitz function (with arbitrary frequency). An attractive feature of our results is that the bounds we derive, on the inf-sup constants of the sesquilinear forms, are explicit in terms of the wavenumber k, the geometry of the scatterer and the parameters describing the surface impedance.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4540\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4540","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了具有阻抗边界条件的亥姆霍兹方程的边值问题,在二维和三维上模拟了时间谐波声波在无界粗糙表面上的散射。通过对一个等价变分公式的分析,证明了当边界具有强局部Lipschitz性质且频率很小时,该问题是适定的;ii)粗糙表面是有界Lipschitz函数(具有任意频率)的图。我们的结果的一个吸引人的特点是,我们在半线性形式的中-sup常数上推导出的边界,在波数k、散射体的几何形状和描述表面阻抗的参数方面是明确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence, uniqueness and explicit bounds for acoustic scattering by an infinite Lipschitz boundary with an impedance condition
Abstract. We study a boundary value problem for the Helmholtz equation with an impedance boundary condition, in two and three dimensions, modelling the scattering of time harmonic acoustic waves by an unbounded rough surface. Via analysis of an equivalent variational formulation we prove this problem to be well-posed when: i) the boundary has the strong local Lipschitz property and the frequency is small; ii) the rough surface is the graph of a bounded Lipschitz function (with arbitrary frequency). An attractive feature of our results is that the bounds we derive, on the inf-sup constants of the sesquilinear forms, are explicit in terms of the wavenumber k, the geometry of the scatterer and the parameters describing the surface impedance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信