图中支配的一些变体的算法方面

Pub Date : 2020-01-31 DOI:10.2478/auom-2020-0039
J. P. Kumar, P. V. S. Reddy
{"title":"图中支配的一些变体的算法方面","authors":"J. P. Kumar, P. V. S. Reddy","doi":"10.2478/auom-2020-0039","DOIUrl":null,"url":null,"abstract":"Abstract A set S ⊆ V is a dominating set in G if for every u ∈ V \\ S, there exists v ∈ S such that (u, v) ∈ E, i.e., N[S] = V . A dominating set S is an isolate dominating set (IDS) if the induced subgraph G[S] has at least one isolated vertex. It is known that Isolate Domination Decision problem (IDOM) is NP-complete for bipartite graphs. In this paper, we extend this by showing that the IDOM is NP-complete for split graphs and perfect elimination bipartite graphs, a subclass of bipartite graphs. A set S ⊆ V is an independent set if G[S] has no edge. A set S ⊆ V is a secure dominating set of G if, for each vertex u ∈ V \\ S, there exists a vertex v ∈ S such that (u, v) ∈ E and (S \\ {v}) ∪ {u} is a dominating set of G. In addition, we initiate the study of a new domination parameter called, independent secure domination. A set S ⊆ V is an independent secure dominating set (InSDS) if S is an independent set and a secure dominating set of G. The minimum size of an InSDS in G is called the independent secure domination number of G and is denoted by γis(G). Given a graph G and a positive integer k, the InSDM problem is to check whether G has an independent secure dominating set of size at most k. We prove that InSDM is NP-complete for bipartite graphs and linear time solvable for bounded tree-width graphs and threshold graphs, a subclass of split graphs. The MInSDS problem is to find an independent secure dominating set of minimum size, in the input graph. Finally, we show that the MInSDS problem is APX-hard for graphs with maximum degree 5.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algorithmic Aspects of Some Variants of Domination in Graphs\",\"authors\":\"J. P. Kumar, P. V. S. Reddy\",\"doi\":\"10.2478/auom-2020-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A set S ⊆ V is a dominating set in G if for every u ∈ V \\\\ S, there exists v ∈ S such that (u, v) ∈ E, i.e., N[S] = V . A dominating set S is an isolate dominating set (IDS) if the induced subgraph G[S] has at least one isolated vertex. It is known that Isolate Domination Decision problem (IDOM) is NP-complete for bipartite graphs. In this paper, we extend this by showing that the IDOM is NP-complete for split graphs and perfect elimination bipartite graphs, a subclass of bipartite graphs. A set S ⊆ V is an independent set if G[S] has no edge. A set S ⊆ V is a secure dominating set of G if, for each vertex u ∈ V \\\\ S, there exists a vertex v ∈ S such that (u, v) ∈ E and (S \\\\ {v}) ∪ {u} is a dominating set of G. In addition, we initiate the study of a new domination parameter called, independent secure domination. A set S ⊆ V is an independent secure dominating set (InSDS) if S is an independent set and a secure dominating set of G. The minimum size of an InSDS in G is called the independent secure domination number of G and is denoted by γis(G). Given a graph G and a positive integer k, the InSDM problem is to check whether G has an independent secure dominating set of size at most k. We prove that InSDM is NP-complete for bipartite graphs and linear time solvable for bounded tree-width graphs and threshold graphs, a subclass of split graphs. The MInSDS problem is to find an independent secure dominating set of minimum size, in the input graph. Finally, we show that the MInSDS problem is APX-hard for graphs with maximum degree 5.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要集S是G中的一个支配集,如果对每一个u∈V \ S,存在V∈S使得(u, V)∈E,即N[S] = V。如果诱导子图G[S]至少有一个孤立顶点,则控制集S为孤立控制集(IDS)。已知二部图的隔离支配决策问题(IDOM)是np完全的。在本文中,我们扩展了这一点,证明了分割图和完全消去二部图(二部图的一个子类)的IDOM是np完全的。当G[S]不存在边时,集S是一个独立集。对于每个顶点u∈V \ S,存在一个顶点V∈S使得(u, V)∈E且(S \ {V})∪{u}是G的一个控制集,则集S∈V是G的一个安全控制集。此外,我们提出了一个新的控制参数——独立安全控制的研究。如果集S是G的独立集和安全控制集,则集S是独立安全控制集(InSDS)。在G中,InSDS的最小大小称为G的独立安全控制数,记为γis(G)。给定一个图G和一个正整数k, InSDM问题是检验G是否有一个最大为k的独立安全支配集。我们证明了InSDM对于二部图是np完全的,对于分割图的一个子集有界树宽图和阈值图是线性时间可解的。MInSDS问题是在输入图中找到一个最小大小的独立安全支配集。最后,我们证明了对于最大度为5的图,MInSDS问题是apx困难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Algorithmic Aspects of Some Variants of Domination in Graphs
Abstract A set S ⊆ V is a dominating set in G if for every u ∈ V \ S, there exists v ∈ S such that (u, v) ∈ E, i.e., N[S] = V . A dominating set S is an isolate dominating set (IDS) if the induced subgraph G[S] has at least one isolated vertex. It is known that Isolate Domination Decision problem (IDOM) is NP-complete for bipartite graphs. In this paper, we extend this by showing that the IDOM is NP-complete for split graphs and perfect elimination bipartite graphs, a subclass of bipartite graphs. A set S ⊆ V is an independent set if G[S] has no edge. A set S ⊆ V is a secure dominating set of G if, for each vertex u ∈ V \ S, there exists a vertex v ∈ S such that (u, v) ∈ E and (S \ {v}) ∪ {u} is a dominating set of G. In addition, we initiate the study of a new domination parameter called, independent secure domination. A set S ⊆ V is an independent secure dominating set (InSDS) if S is an independent set and a secure dominating set of G. The minimum size of an InSDS in G is called the independent secure domination number of G and is denoted by γis(G). Given a graph G and a positive integer k, the InSDM problem is to check whether G has an independent secure dominating set of size at most k. We prove that InSDM is NP-complete for bipartite graphs and linear time solvable for bounded tree-width graphs and threshold graphs, a subclass of split graphs. The MInSDS problem is to find an independent secure dominating set of minimum size, in the input graph. Finally, we show that the MInSDS problem is APX-hard for graphs with maximum degree 5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信