粘土有机干燥对再生高密度聚乙烯(HDPE)和椰壳纤维木塑复合材料(WPC)的影响

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES
M. Nunes, A. F. Farias, E. Medeiros, J. Oliveira, I. Santos, L. H. Carvalho, Amélia S F Santos
{"title":"粘土有机干燥对再生高密度聚乙烯(HDPE)和椰壳纤维木塑复合材料(WPC)的影响","authors":"M. Nunes, A. F. Farias, E. Medeiros, J. Oliveira, I. Santos, L. H. Carvalho, Amélia S F Santos","doi":"10.1177/14777606211019404","DOIUrl":null,"url":null,"abstract":"One way to optimize composite mechanical properties is through hybridization with small amounts of reinforcing fillers. Thus, this study investigates the effect of incorporation of 3 wt% of clay (BT) and organoclay (OBT) on the properties of a recycled wood plastic composite (WPC) based on HDPE and 20 wt% of coir fiber compounded with 5 wt% of maleic anhydride-grafted polypropylene (PP-g-MA), as coupling agent, and 5 wt% of Struktol TPW 113, as lubricating agent. Raw materials were characterized by X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Coir fiber was characterized by optical microscopy and TGA. Wood plastic formulations (with clay and organoclay) were prepared in an internal mixer coupled to a torque rheometer operating at 190°C, 60 rpm for 10 min. Then, the mixtures were compression molded. Formulations were characterized by SEM, TGA, DSC, tensile and water absorption tests. FTIR analysis showed the characteristic bands of organophilic clay. XRD showed an increment in the interplanar distance of the clay, after the incorporation of quaternary ammonium salt (distearyl dimethyl ammonium chloride, Praepagen® WB), confirming the organoclay formation. Organophilization decreases the clay hydrophilic character and reduces the water uptake of WPC-BT. Despite the fact that BT incorporation led to WPC nanocomposite with intercalated structure, this WPC-clay composition did not show a significant increase in tensile strength and elongation at break. The poor interfacial adhesion between the raw materials and the polymer matrix, the low aspect ratio provided by coir fibers and also, the partially intercalated structure of composites have contributed to this behavior.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The effect of clay organophilization on wood plastic composite (WPC) based on recycled high density polyethylene (HDPE) and coir fiber\",\"authors\":\"M. Nunes, A. F. Farias, E. Medeiros, J. Oliveira, I. Santos, L. H. Carvalho, Amélia S F Santos\",\"doi\":\"10.1177/14777606211019404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One way to optimize composite mechanical properties is through hybridization with small amounts of reinforcing fillers. Thus, this study investigates the effect of incorporation of 3 wt% of clay (BT) and organoclay (OBT) on the properties of a recycled wood plastic composite (WPC) based on HDPE and 20 wt% of coir fiber compounded with 5 wt% of maleic anhydride-grafted polypropylene (PP-g-MA), as coupling agent, and 5 wt% of Struktol TPW 113, as lubricating agent. Raw materials were characterized by X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Coir fiber was characterized by optical microscopy and TGA. Wood plastic formulations (with clay and organoclay) were prepared in an internal mixer coupled to a torque rheometer operating at 190°C, 60 rpm for 10 min. Then, the mixtures were compression molded. Formulations were characterized by SEM, TGA, DSC, tensile and water absorption tests. FTIR analysis showed the characteristic bands of organophilic clay. XRD showed an increment in the interplanar distance of the clay, after the incorporation of quaternary ammonium salt (distearyl dimethyl ammonium chloride, Praepagen® WB), confirming the organoclay formation. Organophilization decreases the clay hydrophilic character and reduces the water uptake of WPC-BT. Despite the fact that BT incorporation led to WPC nanocomposite with intercalated structure, this WPC-clay composition did not show a significant increase in tensile strength and elongation at break. The poor interfacial adhesion between the raw materials and the polymer matrix, the low aspect ratio provided by coir fibers and also, the partially intercalated structure of composites have contributed to this behavior.\",\"PeriodicalId\":20860,\"journal\":{\"name\":\"Progress in Rubber Plastics and Recycling Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Rubber Plastics and Recycling Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14777606211019404\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14777606211019404","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 2

摘要

优化复合材料力学性能的一种方法是与少量增强填料杂交。因此,本研究考察了3wt %的粘土(BT)和有机粘土(OBT)的掺入对以HDPE为基础的再生木塑复合材料(WPC)性能的影响,该复合材料以20%的coir纤维为基础,以5%的马来酸酐接枝聚丙烯(PP-g-MA)为偶联剂,5%的Struktol tpw113为润滑剂。采用x射线荧光(XRF)、傅里叶变换红外光谱(FTIR)、x射线衍射(XRD)、扫描电镜(SEM)和热重分析(TGA)对原料进行了表征。用光学显微镜和热重分析仪对椰壳纤维进行了表征。木塑配方(含粘土和有机粘土)在内部混合器中制备,该混合器与扭矩流变仪在190°C, 60 rpm下工作10分钟。然后,混合物被压缩成型。通过SEM、TGA、DSC、拉伸、吸水等测试对配方进行表征。FTIR分析显示了亲有机粘土的特征带。XRD显示,加入季铵盐(二硬脂酰二甲基氯化铵,Praepagen®WB)后,粘土的面间距增加,证实了有机粘土的形成。有机干燥降低了粘土的亲水性,降低了WPC-BT的吸水率。尽管BT的掺入导致WPC纳米复合材料具有插层结构,但这种WPC-粘土组成并未显示出抗拉强度和断裂伸长率的显著增加。原料与聚合物基体之间的界面附着力差,椰壳纤维提供的低纵横比以及复合材料的部分插层结构都是导致这种行为的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of clay organophilization on wood plastic composite (WPC) based on recycled high density polyethylene (HDPE) and coir fiber
One way to optimize composite mechanical properties is through hybridization with small amounts of reinforcing fillers. Thus, this study investigates the effect of incorporation of 3 wt% of clay (BT) and organoclay (OBT) on the properties of a recycled wood plastic composite (WPC) based on HDPE and 20 wt% of coir fiber compounded with 5 wt% of maleic anhydride-grafted polypropylene (PP-g-MA), as coupling agent, and 5 wt% of Struktol TPW 113, as lubricating agent. Raw materials were characterized by X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Coir fiber was characterized by optical microscopy and TGA. Wood plastic formulations (with clay and organoclay) were prepared in an internal mixer coupled to a torque rheometer operating at 190°C, 60 rpm for 10 min. Then, the mixtures were compression molded. Formulations were characterized by SEM, TGA, DSC, tensile and water absorption tests. FTIR analysis showed the characteristic bands of organophilic clay. XRD showed an increment in the interplanar distance of the clay, after the incorporation of quaternary ammonium salt (distearyl dimethyl ammonium chloride, Praepagen® WB), confirming the organoclay formation. Organophilization decreases the clay hydrophilic character and reduces the water uptake of WPC-BT. Despite the fact that BT incorporation led to WPC nanocomposite with intercalated structure, this WPC-clay composition did not show a significant increase in tensile strength and elongation at break. The poor interfacial adhesion between the raw materials and the polymer matrix, the low aspect ratio provided by coir fibers and also, the partially intercalated structure of composites have contributed to this behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Rubber Plastics and Recycling Technology
Progress in Rubber Plastics and Recycling Technology MATERIALS SCIENCE, COMPOSITES-POLYMER SCIENCE
CiteScore
4.40
自引率
7.70%
发文量
18
审稿时长
>12 weeks
期刊介绍: The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信