约束优化问题的2 -对偶间隙陈述的表征

Horaţiu-Vasile Boncea, S. Grad
{"title":"约束优化问题的2 -对偶间隙陈述的表征","authors":"Horaţiu-Vasile Boncea, S. Grad","doi":"10.2478/s11533-013-0294-9","DOIUrl":null,"url":null,"abstract":"In this paper we present different regularity conditions that equivalently characterize various ɛ-duality gap statements (with ɛ ≥ 0) for constrained optimization problems and their Lagrange and Fenchel-Lagrange duals in separated locally convex spaces, respectively. These regularity conditions are formulated by using epigraphs and ɛ-subdifferentials. When ɛ = 0 we rediscover recent results on stable strong and total duality and zero duality gap from the literature.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"1 1","pages":"2020-2033"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Characterizations of ɛ-duality gap statements for constrained optimization problems\",\"authors\":\"Horaţiu-Vasile Boncea, S. Grad\",\"doi\":\"10.2478/s11533-013-0294-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present different regularity conditions that equivalently characterize various ɛ-duality gap statements (with ɛ ≥ 0) for constrained optimization problems and their Lagrange and Fenchel-Lagrange duals in separated locally convex spaces, respectively. These regularity conditions are formulated by using epigraphs and ɛ-subdifferentials. When ɛ = 0 we rediscover recent results on stable strong and total duality and zero duality gap from the literature.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"2020-2033\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0294-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0294-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文分别给出了分离局部凸空间中约束优化问题及其Lagrange和fenchell -Lagrange对偶的不同正则性条件,这些条件等价地表征了不同的[≥0]的区间间隔陈述。这些正则性条件是用题词和次微分来表述的。当ε = 0时,我们重新发现了文献中关于稳定强全对偶和零对偶间隙的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of ɛ-duality gap statements for constrained optimization problems
In this paper we present different regularity conditions that equivalently characterize various ɛ-duality gap statements (with ɛ ≥ 0) for constrained optimization problems and their Lagrange and Fenchel-Lagrange duals in separated locally convex spaces, respectively. These regularity conditions are formulated by using epigraphs and ɛ-subdifferentials. When ɛ = 0 we rediscover recent results on stable strong and total duality and zero duality gap from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信