{"title":"混合光滑函数的数值加权积分","authors":"D. Dung","doi":"10.48550/arXiv.2208.09108","DOIUrl":null,"url":null,"abstract":"We investigate the approximation of weighted integrals over $\\mathbb{R}^d$ for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to $n$ integration nodes for functions from these spaces. In the one-dimensional case $(d=1)$, we obtain the right convergence rate of optimal quadratures. For $d \\ge 2$, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain $\\mathbb{R}^d$.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical weighted integration of functions having mixed smoothness\",\"authors\":\"D. Dung\",\"doi\":\"10.48550/arXiv.2208.09108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the approximation of weighted integrals over $\\\\mathbb{R}^d$ for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to $n$ integration nodes for functions from these spaces. In the one-dimensional case $(d=1)$, we obtain the right convergence rate of optimal quadratures. For $d \\\\ge 2$, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain $\\\\mathbb{R}^d$.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.09108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.09108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Numerical weighted integration of functions having mixed smoothness
We investigate the approximation of weighted integrals over $\mathbb{R}^d$ for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to $n$ integration nodes for functions from these spaces. In the one-dimensional case $(d=1)$, we obtain the right convergence rate of optimal quadratures. For $d \ge 2$, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain $\mathbb{R}^d$.