混合光滑函数的数值加权积分

IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
D. Dung
{"title":"混合光滑函数的数值加权积分","authors":"D. Dung","doi":"10.48550/arXiv.2208.09108","DOIUrl":null,"url":null,"abstract":"We investigate the approximation of weighted integrals over $\\mathbb{R}^d$ for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to $n$ integration nodes for functions from these spaces. In the one-dimensional case $(d=1)$, we obtain the right convergence rate of optimal quadratures. For $d \\ge 2$, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain $\\mathbb{R}^d$.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"132 1","pages":"101757"},"PeriodicalIF":2.2000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical weighted integration of functions having mixed smoothness\",\"authors\":\"D. Dung\",\"doi\":\"10.48550/arXiv.2208.09108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the approximation of weighted integrals over $\\\\mathbb{R}^d$ for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to $n$ integration nodes for functions from these spaces. In the one-dimensional case $(d=1)$, we obtain the right convergence rate of optimal quadratures. For $d \\\\ge 2$, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain $\\\\mathbb{R}^d$.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":\"132 1\",\"pages\":\"101757\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.09108\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.09108","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

研究了混合光滑加权Sobolev空间上的加权积分在$\mathbb{R}^d$上的近似。我们证明了这些空间中函数关于$n$积分节点的最优正交收敛率的上界和下界。在一维情况下,我们得到了最优正交的正确收敛速率。对于$d \ ge2 $,上界由函数域$\mathbb{R}^d$中阶跃双曲交叉上积分节点的稀疏网格正交来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical weighted integration of functions having mixed smoothness
We investigate the approximation of weighted integrals over $\mathbb{R}^d$ for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to $n$ integration nodes for functions from these spaces. In the one-dimensional case $(d=1)$, we obtain the right convergence rate of optimal quadratures. For $d \ge 2$, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain $\mathbb{R}^d$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of complex networks
Journal of complex networks MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.20
自引率
9.50%
发文量
40
期刊介绍: Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信