混合光滑函数的数值加权积分

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D. Dung
{"title":"混合光滑函数的数值加权积分","authors":"D. Dung","doi":"10.48550/arXiv.2208.09108","DOIUrl":null,"url":null,"abstract":"We investigate the approximation of weighted integrals over $\\mathbb{R}^d$ for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to $n$ integration nodes for functions from these spaces. In the one-dimensional case $(d=1)$, we obtain the right convergence rate of optimal quadratures. For $d \\ge 2$, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain $\\mathbb{R}^d$.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical weighted integration of functions having mixed smoothness\",\"authors\":\"D. Dung\",\"doi\":\"10.48550/arXiv.2208.09108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the approximation of weighted integrals over $\\\\mathbb{R}^d$ for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to $n$ integration nodes for functions from these spaces. In the one-dimensional case $(d=1)$, we obtain the right convergence rate of optimal quadratures. For $d \\\\ge 2$, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain $\\\\mathbb{R}^d$.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.09108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.09108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

研究了混合光滑加权Sobolev空间上的加权积分在$\mathbb{R}^d$上的近似。我们证明了这些空间中函数关于$n$积分节点的最优正交收敛率的上界和下界。在一维情况下,我们得到了最优正交的正确收敛速率。对于$d \ ge2 $,上界由函数域$\mathbb{R}^d$中阶跃双曲交叉上积分节点的稀疏网格正交来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical weighted integration of functions having mixed smoothness
We investigate the approximation of weighted integrals over $\mathbb{R}^d$ for integrands from weighted Sobolev spaces of mixed smoothness. We prove upper and lower bounds of the convergence rate of optimal quadratures with respect to $n$ integration nodes for functions from these spaces. In the one-dimensional case $(d=1)$, we obtain the right convergence rate of optimal quadratures. For $d \ge 2$, the upper bound is performed by sparse-grid quadratures with integration nodes on step hyperbolic crosses in the function domain $\mathbb{R}^d$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信