Zhen Xiao, Qun Zhao, Fen Lin, Mingmin Zhu, Jinlian Deng
{"title":"用有限寿命设计预测非气动车轮的疲劳寿命","authors":"Zhen Xiao, Qun Zhao, Fen Lin, Mingmin Zhu, Jinlian Deng","doi":"10.5545/sv-jme.2017.4695","DOIUrl":null,"url":null,"abstract":"To avoid pneumatic tire puncture, blow-out and other problems, a new type of non-pneumatic safety wheel called the mechanical elastic wheel (ME-Wheel) has been developed and investigated. The durability of the ME-Wheel is studied to improve its life; at the same time, the best preventive maintenance period can also be provided for the users, to ensure the safety and reliability of the ME-Wheel in operating conditions. The finite-life design method is proposed to predict the ME-Wheel life; the weakest component of ME-Wheel is ascertained by analysing its structure static strength, and the predicted model of pin for lifetime theory is established by using finite-life design method. Furthermore, the ME-Wheel durability is simulated using the finite element method (FEM) on the basis of the established virtual proving ground, and the enhancement coefficient is combined to calculate ME-Wheel lifespan. Finally, the results of theoretical calculation and simulation are verified using endurable road testing. The results show that the methods of theoretical calculation and simulation, which are applied in our paper to predict the lifespan of ME-Wheel, are highly congruent with the experimental results. Therefore, the proposed method is also entirely suitable for other mechanical structures in the durability research field.","PeriodicalId":49472,"journal":{"name":"Strojniski Vestnik-Journal of Mechanical Engineering","volume":"10 1","pages":"56-67"},"PeriodicalIF":1.2000,"publicationDate":"2018-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Studying the Fatigue Life of a Non-pneumatic Wheel by Using Finite-Life Design for Life Prediction\",\"authors\":\"Zhen Xiao, Qun Zhao, Fen Lin, Mingmin Zhu, Jinlian Deng\",\"doi\":\"10.5545/sv-jme.2017.4695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To avoid pneumatic tire puncture, blow-out and other problems, a new type of non-pneumatic safety wheel called the mechanical elastic wheel (ME-Wheel) has been developed and investigated. The durability of the ME-Wheel is studied to improve its life; at the same time, the best preventive maintenance period can also be provided for the users, to ensure the safety and reliability of the ME-Wheel in operating conditions. The finite-life design method is proposed to predict the ME-Wheel life; the weakest component of ME-Wheel is ascertained by analysing its structure static strength, and the predicted model of pin for lifetime theory is established by using finite-life design method. Furthermore, the ME-Wheel durability is simulated using the finite element method (FEM) on the basis of the established virtual proving ground, and the enhancement coefficient is combined to calculate ME-Wheel lifespan. Finally, the results of theoretical calculation and simulation are verified using endurable road testing. The results show that the methods of theoretical calculation and simulation, which are applied in our paper to predict the lifespan of ME-Wheel, are highly congruent with the experimental results. Therefore, the proposed method is also entirely suitable for other mechanical structures in the durability research field.\",\"PeriodicalId\":49472,\"journal\":{\"name\":\"Strojniski Vestnik-Journal of Mechanical Engineering\",\"volume\":\"10 1\",\"pages\":\"56-67\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojniski Vestnik-Journal of Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5545/sv-jme.2017.4695\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniski Vestnik-Journal of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5545/sv-jme.2017.4695","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Studying the Fatigue Life of a Non-pneumatic Wheel by Using Finite-Life Design for Life Prediction
To avoid pneumatic tire puncture, blow-out and other problems, a new type of non-pneumatic safety wheel called the mechanical elastic wheel (ME-Wheel) has been developed and investigated. The durability of the ME-Wheel is studied to improve its life; at the same time, the best preventive maintenance period can also be provided for the users, to ensure the safety and reliability of the ME-Wheel in operating conditions. The finite-life design method is proposed to predict the ME-Wheel life; the weakest component of ME-Wheel is ascertained by analysing its structure static strength, and the predicted model of pin for lifetime theory is established by using finite-life design method. Furthermore, the ME-Wheel durability is simulated using the finite element method (FEM) on the basis of the established virtual proving ground, and the enhancement coefficient is combined to calculate ME-Wheel lifespan. Finally, the results of theoretical calculation and simulation are verified using endurable road testing. The results show that the methods of theoretical calculation and simulation, which are applied in our paper to predict the lifespan of ME-Wheel, are highly congruent with the experimental results. Therefore, the proposed method is also entirely suitable for other mechanical structures in the durability research field.
期刊介绍:
The international journal publishes original and (mini)review articles covering the concepts of materials science, mechanics, kinematics, thermodynamics, energy and environment, mechatronics and robotics, fluid mechanics, tribology, cybernetics, industrial engineering and structural analysis.
The journal follows new trends and progress proven practice in the mechanical engineering and also in the closely related sciences as are electrical, civil and process engineering, medicine, microbiology, ecology, agriculture, transport systems, aviation, and others, thus creating a unique forum for interdisciplinary or multidisciplinary dialogue.