快速多目标约束进化算法及其收敛性

MA Yong-jie , BAI Yu-long , JIANG Zhao-yuan
{"title":"快速多目标约束进化算法及其收敛性","authors":"MA Yong-jie ,&nbsp;BAI Yu-long ,&nbsp;JIANG Zhao-yuan","doi":"10.1016/S1874-8651(10)60050-6","DOIUrl":null,"url":null,"abstract":"<div><p>Aimed at the problems of slow pace of convergence and easy subsidence precocious problem, a new fast evolution algorithm is proposed for constrained multiobjective optimization problems. A crossover operator, which searches simultaneously from feasible and infeasible solution space is designed. Combining constraint condition and objective, a new partial-order relation for comparing individual is introduced. Thus, a new Niche computation method for maintaining diversity of population is suggested and repeat search is avoided using searched solution space. Based on all these, a novel effective evolution algorithm for global optimization is proposed and its convergence is proved. Compared with the current MOEAs, the simulation results show that this algorithm can rapidly converge at global Pareto solutions, and can maintain diversity of population.</p></div>","PeriodicalId":101206,"journal":{"name":"Systems Engineering - Theory & Practice","volume":"29 5","pages":"Pages 149-157"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-8651(10)60050-6","citationCount":"11","resultStr":"{\"title\":\"Fast Multi-objective Constrained Evolutionary Algorithm and Its Convergence\",\"authors\":\"MA Yong-jie ,&nbsp;BAI Yu-long ,&nbsp;JIANG Zhao-yuan\",\"doi\":\"10.1016/S1874-8651(10)60050-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aimed at the problems of slow pace of convergence and easy subsidence precocious problem, a new fast evolution algorithm is proposed for constrained multiobjective optimization problems. A crossover operator, which searches simultaneously from feasible and infeasible solution space is designed. Combining constraint condition and objective, a new partial-order relation for comparing individual is introduced. Thus, a new Niche computation method for maintaining diversity of population is suggested and repeat search is avoided using searched solution space. Based on all these, a novel effective evolution algorithm for global optimization is proposed and its convergence is proved. Compared with the current MOEAs, the simulation results show that this algorithm can rapidly converge at global Pareto solutions, and can maintain diversity of population.</p></div>\",\"PeriodicalId\":101206,\"journal\":{\"name\":\"Systems Engineering - Theory & Practice\",\"volume\":\"29 5\",\"pages\":\"Pages 149-157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1874-8651(10)60050-6\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Engineering - Theory & Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874865110600506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering - Theory & Practice","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874865110600506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

针对约束多目标优化问题的收敛速度慢和易沉降早熟问题,提出了一种新的约束多目标优化快速进化算法。设计了一种从可行解空间和不可行解空间同时搜索的交叉算子。结合约束条件和目标,提出了一种新的个体比较的偏序关系。在此基础上,提出了一种保持种群多样性的生态位计算方法,避免了利用搜索解空间进行重复搜索。在此基础上,提出了一种有效的全局优化进化算法,并证明了该算法的收敛性。仿真结果表明,该算法能够快速收敛于全局Pareto解,并能保持种群的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Multi-objective Constrained Evolutionary Algorithm and Its Convergence

Aimed at the problems of slow pace of convergence and easy subsidence precocious problem, a new fast evolution algorithm is proposed for constrained multiobjective optimization problems. A crossover operator, which searches simultaneously from feasible and infeasible solution space is designed. Combining constraint condition and objective, a new partial-order relation for comparing individual is introduced. Thus, a new Niche computation method for maintaining diversity of population is suggested and repeat search is avoided using searched solution space. Based on all these, a novel effective evolution algorithm for global optimization is proposed and its convergence is proved. Compared with the current MOEAs, the simulation results show that this algorithm can rapidly converge at global Pareto solutions, and can maintain diversity of population.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信