{"title":"立方体表面光场及其采样、压缩、实时渲染","authors":"Xiao Ai, Yigang Wang, Simin Kou","doi":"10.2312/pg.20211381","DOIUrl":null,"url":null,"abstract":"Light field is gaining both research and commercial interests since it has the potential to produce view-dependent and photorealistic effects for virtual and augmented reality. In this paper, we further explore the light field and presents a novel parameterization that permits 1) effectively sampling the light field of an object with unknown geometry, 2) efficiently compressing and 3) real-time rendering from arbitrary viewpoints. A novel, key element in our parameterization is that we use the intersections of the light rays and a general cube surface to parameterize the four-dimensional light field, constructing the cube surface light field (CSLF). We resolve the huge data amount problem in CSLF by uniformly decimating the viewpoint space to form a set of key views which are then converted into a pseudo video sequence and compressed using the high efficiency video coding encoder. To render the CSLF, we employ a ray casting approach and draw a polygonal mesh, enabling real-time generating arbitrary views from the outside of the cube surface. We build the CSLF datasets and extensively evaluate our parameterization from the sampling, compression and rendering. Results show that the cube surface parameterization can simultaneously achieve the above three characteristics, indicating the potentiality in practical virtual and augmented reality. CCS Concepts • Computing methodologies → Image-based rendering; Ray tracing; Image compression;","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"62 1","pages":"13-18"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CSLF: Cube Surface Light Field and Its Sampling, Compression, Real-Time Rendering\",\"authors\":\"Xiao Ai, Yigang Wang, Simin Kou\",\"doi\":\"10.2312/pg.20211381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light field is gaining both research and commercial interests since it has the potential to produce view-dependent and photorealistic effects for virtual and augmented reality. In this paper, we further explore the light field and presents a novel parameterization that permits 1) effectively sampling the light field of an object with unknown geometry, 2) efficiently compressing and 3) real-time rendering from arbitrary viewpoints. A novel, key element in our parameterization is that we use the intersections of the light rays and a general cube surface to parameterize the four-dimensional light field, constructing the cube surface light field (CSLF). We resolve the huge data amount problem in CSLF by uniformly decimating the viewpoint space to form a set of key views which are then converted into a pseudo video sequence and compressed using the high efficiency video coding encoder. To render the CSLF, we employ a ray casting approach and draw a polygonal mesh, enabling real-time generating arbitrary views from the outside of the cube surface. We build the CSLF datasets and extensively evaluate our parameterization from the sampling, compression and rendering. Results show that the cube surface parameterization can simultaneously achieve the above three characteristics, indicating the potentiality in practical virtual and augmented reality. CCS Concepts • Computing methodologies → Image-based rendering; Ray tracing; Image compression;\",\"PeriodicalId\":88304,\"journal\":{\"name\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"volume\":\"62 1\",\"pages\":\"13-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/pg.20211381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/pg.20211381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CSLF: Cube Surface Light Field and Its Sampling, Compression, Real-Time Rendering
Light field is gaining both research and commercial interests since it has the potential to produce view-dependent and photorealistic effects for virtual and augmented reality. In this paper, we further explore the light field and presents a novel parameterization that permits 1) effectively sampling the light field of an object with unknown geometry, 2) efficiently compressing and 3) real-time rendering from arbitrary viewpoints. A novel, key element in our parameterization is that we use the intersections of the light rays and a general cube surface to parameterize the four-dimensional light field, constructing the cube surface light field (CSLF). We resolve the huge data amount problem in CSLF by uniformly decimating the viewpoint space to form a set of key views which are then converted into a pseudo video sequence and compressed using the high efficiency video coding encoder. To render the CSLF, we employ a ray casting approach and draw a polygonal mesh, enabling real-time generating arbitrary views from the outside of the cube surface. We build the CSLF datasets and extensively evaluate our parameterization from the sampling, compression and rendering. Results show that the cube surface parameterization can simultaneously achieve the above three characteristics, indicating the potentiality in practical virtual and augmented reality. CCS Concepts • Computing methodologies → Image-based rendering; Ray tracing; Image compression;