通过移动预测和预取增强移动数据卸载

V. Siris, Dimitrios Kalyvas
{"title":"通过移动预测和预取增强移动数据卸载","authors":"V. Siris, Dimitrios Kalyvas","doi":"10.1145/2348676.2348682","DOIUrl":null,"url":null,"abstract":"We present procedures that exploit mobility prediction and prefetching to enhance offloading of traffic from mobile networks to WiFi hotspots, for both delay tolerant and delay sensitive traffic. We evaluate the procedures in terms of the percentage of offloaded traffic, the data transfer delay, and the cache size used for prefetching. The evaluation considers empirical measurements and shows how various parameters influence the performance of the procedures, and their robustness to time and throughput estimation errors.","PeriodicalId":43578,"journal":{"name":"Mobile Computing and Communications Review","volume":"13 1","pages":"22-29"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Enhancing mobile data offloading with mobility prediction and prefetching\",\"authors\":\"V. Siris, Dimitrios Kalyvas\",\"doi\":\"10.1145/2348676.2348682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present procedures that exploit mobility prediction and prefetching to enhance offloading of traffic from mobile networks to WiFi hotspots, for both delay tolerant and delay sensitive traffic. We evaluate the procedures in terms of the percentage of offloaded traffic, the data transfer delay, and the cache size used for prefetching. The evaluation considers empirical measurements and shows how various parameters influence the performance of the procedures, and their robustness to time and throughput estimation errors.\",\"PeriodicalId\":43578,\"journal\":{\"name\":\"Mobile Computing and Communications Review\",\"volume\":\"13 1\",\"pages\":\"22-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mobile Computing and Communications Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2348676.2348682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile Computing and Communications Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2348676.2348682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

我们提出了利用移动性预测和预取的程序,以增强从移动网络到WiFi热点的流量卸载,用于延迟容忍和延迟敏感流量。我们根据卸载流量的百分比、数据传输延迟和用于预取的缓存大小来评估这些过程。评估考虑了经验测量,并显示了各种参数如何影响程序的性能,以及它们对时间和吞吐量估计误差的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing mobile data offloading with mobility prediction and prefetching
We present procedures that exploit mobility prediction and prefetching to enhance offloading of traffic from mobile networks to WiFi hotspots, for both delay tolerant and delay sensitive traffic. We evaluate the procedures in terms of the percentage of offloaded traffic, the data transfer delay, and the cache size used for prefetching. The evaluation considers empirical measurements and shows how various parameters influence the performance of the procedures, and their robustness to time and throughput estimation errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信