分子标记

{"title":"分子标记","authors":"","doi":"10.4018/978-1-7998-4312-2.ch002","DOIUrl":null,"url":null,"abstract":"Conventionally, establishment of relationship between the genotype and phenotype through genetic analysis was considered as key to success in plant breeding. The discovery of molecular markers has changed the entire scenario of genome analysis. Coinheritance of a gene of interest and a marker suggests that they are physically close on the chromosome. A marker must be polymorphic in nature for their identification and utilization. Such polymorphism can be detected at three levels: phenotype (morphological), difference in biomolecules (biochemical), or differences in the nucleotide sequence of DNA (molecular). These markers act as a versatile tool and find their importance in taxonomy, plant breeding, gene mapping, cultivar identification, and forensic science. They have several advantages over the conventional methods of plant breeding for developing new varieties with higher rate of success. This chapter covers the basic principles and applications of various types of markers with special emphasis on molecular markers.","PeriodicalId":7235,"journal":{"name":"Advances in Environmental Engineering and Green Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Markers\",\"authors\":\"\",\"doi\":\"10.4018/978-1-7998-4312-2.ch002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventionally, establishment of relationship between the genotype and phenotype through genetic analysis was considered as key to success in plant breeding. The discovery of molecular markers has changed the entire scenario of genome analysis. Coinheritance of a gene of interest and a marker suggests that they are physically close on the chromosome. A marker must be polymorphic in nature for their identification and utilization. Such polymorphism can be detected at three levels: phenotype (morphological), difference in biomolecules (biochemical), or differences in the nucleotide sequence of DNA (molecular). These markers act as a versatile tool and find their importance in taxonomy, plant breeding, gene mapping, cultivar identification, and forensic science. They have several advantages over the conventional methods of plant breeding for developing new varieties with higher rate of success. This chapter covers the basic principles and applications of various types of markers with special emphasis on molecular markers.\",\"PeriodicalId\":7235,\"journal\":{\"name\":\"Advances in Environmental Engineering and Green Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Environmental Engineering and Green Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-4312-2.ch002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental Engineering and Green Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-4312-2.ch002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统上,通过遗传分析建立基因型和表型之间的关系被认为是植物育种成功的关键。分子标记的发现改变了整个基因组分析的情况。一个感兴趣的基因和一个标记的共遗传表明它们在染色体上是物理上接近的。标记必须具有多态性才能被识别和利用。这种多态性可以在表型(形态学)、生物分子差异(生化)或DNA核苷酸序列差异(分子)三个层面进行检测。这些标记作为一种多功能工具,在分类学、植物育种、基因定位、品种鉴定和法医学中发挥着重要作用。与传统的植物育种方法相比,它们有几个优势,可以培育出成功率更高的新品种。本章介绍了各种类型标记的基本原理和应用,重点介绍了分子标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Markers
Conventionally, establishment of relationship between the genotype and phenotype through genetic analysis was considered as key to success in plant breeding. The discovery of molecular markers has changed the entire scenario of genome analysis. Coinheritance of a gene of interest and a marker suggests that they are physically close on the chromosome. A marker must be polymorphic in nature for their identification and utilization. Such polymorphism can be detected at three levels: phenotype (morphological), difference in biomolecules (biochemical), or differences in the nucleotide sequence of DNA (molecular). These markers act as a versatile tool and find their importance in taxonomy, plant breeding, gene mapping, cultivar identification, and forensic science. They have several advantages over the conventional methods of plant breeding for developing new varieties with higher rate of success. This chapter covers the basic principles and applications of various types of markers with special emphasis on molecular markers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信