使用卷积RFF和分层加权CAM可解释性进行局部镇痛监测的足部分割

Juan Carlos Aguirre-Arango, A. Álvarez-Meza, G. Castellanos-Domínguez
{"title":"使用卷积RFF和分层加权CAM可解释性进行局部镇痛监测的足部分割","authors":"Juan Carlos Aguirre-Arango, A. Álvarez-Meza, G. Castellanos-Domínguez","doi":"10.3390/computation11060113","DOIUrl":null,"url":null,"abstract":"Regional neuraxial analgesia for pain relief during labor is a universally accepted, safe, and effective procedure involving administering medication into the epidural. Still, an adequate assessment requires continuous patient monitoring after catheter placement. This research introduces a cutting-edge semantic thermal image segmentation method emphasizing superior interpretability for regional neuraxial analgesia monitoring. Namely, we propose a novel Convolutional Random Fourier Features-based approach, termed CRFFg, and custom-designed layer-wise weighted class-activation maps created explicitly for foot segmentation. Our method aims to enhance three well-known semantic segmentation (FCN, UNet, and ResUNet). We have rigorously evaluated our methodology on a challenging dataset of foot thermal images from pregnant women who underwent epidural anesthesia. Its limited size and significant variability distinguish this dataset. Furthermore, our validation results indicate that our proposed methodology not only delivers competitive results in foot segmentation but also significantly improves the explainability of the process.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"6 1","pages":"113"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feet Segmentation for Regional Analgesia Monitoring Using Convolutional RFF and Layer-Wise Weighted CAM Interpretability\",\"authors\":\"Juan Carlos Aguirre-Arango, A. Álvarez-Meza, G. Castellanos-Domínguez\",\"doi\":\"10.3390/computation11060113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regional neuraxial analgesia for pain relief during labor is a universally accepted, safe, and effective procedure involving administering medication into the epidural. Still, an adequate assessment requires continuous patient monitoring after catheter placement. This research introduces a cutting-edge semantic thermal image segmentation method emphasizing superior interpretability for regional neuraxial analgesia monitoring. Namely, we propose a novel Convolutional Random Fourier Features-based approach, termed CRFFg, and custom-designed layer-wise weighted class-activation maps created explicitly for foot segmentation. Our method aims to enhance three well-known semantic segmentation (FCN, UNet, and ResUNet). We have rigorously evaluated our methodology on a challenging dataset of foot thermal images from pregnant women who underwent epidural anesthesia. Its limited size and significant variability distinguish this dataset. Furthermore, our validation results indicate that our proposed methodology not only delivers competitive results in foot segmentation but also significantly improves the explainability of the process.\",\"PeriodicalId\":10526,\"journal\":{\"name\":\"Comput.\",\"volume\":\"6 1\",\"pages\":\"113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11060113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11060113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

局部神经轴镇痛是一种普遍接受的、安全有效的方法,包括将药物注入硬膜外。然而,充分的评估需要在置管后对患者进行持续监测。本研究引入一种前沿的语义热图像分割方法,强调了区域神经轴向镇痛监测的优越可解释性。也就是说,我们提出了一种新颖的基于卷积随机傅立叶特征的方法,称为CRFFg,以及定制设计的分层加权类激活地图,这些地图是明确为脚分割而创建的。我们的方法旨在增强三种著名的语义分割(FCN, UNet和ResUNet)。我们严格评估了我们的方法在一个具有挑战性的数据集足热图像从孕妇接受硬膜外麻醉。其有限的大小和显著的可变性区分了这个数据集。此外,我们的验证结果表明,我们提出的方法不仅在足部分割方面提供了有竞争力的结果,而且显著提高了过程的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feet Segmentation for Regional Analgesia Monitoring Using Convolutional RFF and Layer-Wise Weighted CAM Interpretability
Regional neuraxial analgesia for pain relief during labor is a universally accepted, safe, and effective procedure involving administering medication into the epidural. Still, an adequate assessment requires continuous patient monitoring after catheter placement. This research introduces a cutting-edge semantic thermal image segmentation method emphasizing superior interpretability for regional neuraxial analgesia monitoring. Namely, we propose a novel Convolutional Random Fourier Features-based approach, termed CRFFg, and custom-designed layer-wise weighted class-activation maps created explicitly for foot segmentation. Our method aims to enhance three well-known semantic segmentation (FCN, UNet, and ResUNet). We have rigorously evaluated our methodology on a challenging dataset of foot thermal images from pregnant women who underwent epidural anesthesia. Its limited size and significant variability distinguish this dataset. Furthermore, our validation results indicate that our proposed methodology not only delivers competitive results in foot segmentation but also significantly improves the explainability of the process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信