人-机器人团队同步关节动作的检测与综合

T. Iqbal, L. Riek
{"title":"人-机器人团队同步关节动作的检测与综合","authors":"T. Iqbal, L. Riek","doi":"10.1145/2818346.2823315","DOIUrl":null,"url":null,"abstract":"To become capable teammates to people, robots need the ability to interpret human activities and appropriately adjust their actions in real time. The goal of our research is to build robots that can work fluently and contingently with human teams. To this end, we have designed novel nonlinear dynamical methods to automatically model and detect synchronous joint action (SJA) in human teams. We also have extended this work to enable robots to move jointly with human teammates in real time. In this paper, we describe our work to date, and discuss our future research plans to further explore this research space. The results of this work are expected to benefit researchers in social signal processing, human-machine interaction, and robotics.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"272 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detecting and Synthesizing Synchronous Joint Action in Human-Robot Teams\",\"authors\":\"T. Iqbal, L. Riek\",\"doi\":\"10.1145/2818346.2823315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To become capable teammates to people, robots need the ability to interpret human activities and appropriately adjust their actions in real time. The goal of our research is to build robots that can work fluently and contingently with human teams. To this end, we have designed novel nonlinear dynamical methods to automatically model and detect synchronous joint action (SJA) in human teams. We also have extended this work to enable robots to move jointly with human teammates in real time. In this paper, we describe our work to date, and discuss our future research plans to further explore this research space. The results of this work are expected to benefit researchers in social signal processing, human-machine interaction, and robotics.\",\"PeriodicalId\":20486,\"journal\":{\"name\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"volume\":\"272 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818346.2823315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2823315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了成为有能力的人的队友,机器人需要能够解释人类的活动,并及时适当地调整他们的行动。我们研究的目标是制造能够流畅地与人类团队合作的机器人。为此,我们设计了一种新的非线性动力学方法来自动建模和检测人类团队中的同步关节动作。我们还扩展了这项工作,使机器人能够与人类队友实时联合移动。在本文中,我们描述了我们迄今为止的工作,并讨论了我们未来的研究计划,以进一步探索这一研究空间。这项工作的结果有望使社会信号处理、人机交互和机器人技术的研究人员受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting and Synthesizing Synchronous Joint Action in Human-Robot Teams
To become capable teammates to people, robots need the ability to interpret human activities and appropriately adjust their actions in real time. The goal of our research is to build robots that can work fluently and contingently with human teams. To this end, we have designed novel nonlinear dynamical methods to automatically model and detect synchronous joint action (SJA) in human teams. We also have extended this work to enable robots to move jointly with human teammates in real time. In this paper, we describe our work to date, and discuss our future research plans to further explore this research space. The results of this work are expected to benefit researchers in social signal processing, human-machine interaction, and robotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信