具有更新主震到达过程的时空ETAS模型

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Tom Stindl, Feng Chen
{"title":"具有更新主震到达过程的时空ETAS模型","authors":"Tom Stindl,&nbsp;Feng Chen","doi":"10.1111/rssc.12579","DOIUrl":null,"url":null,"abstract":"<p>We propose a spatiotemporal point process model that enhances the classical Epidemic-Type Aftershock Sequence (ETAS) model. This is achieved with the introduction of a renewal main-shock arrival process and we call this extension the renewal ETAS (RETAS) model. This modification is similar in spirit to the renewal Hawkes (RHawkes) process but the conditional intensity process supports a spatial component. It empowers the main-shock intensity to reset upon the arrival of main-shocks. This allows for heavier clustering of main-shocks than the classical spatiotemporal ETAS model. We introduce a likelihood evaluation algorithm for parameter estimation and provide a novel procedure to evaluate the fitted model's goodness-of-fit (GOF) based on a sequential application of the Rosenblatt transformation. A simulation algorithm for the RETAS model is outlined and used to validate the numerical performance of the likelihood evaluation algorithm and GOF test procedure. We illustrate the proposed model and methods on various earthquake catalogues around the world each with distinctly different seismic activity. These catalogues demonstrate the RETAS model's additional flexibility in comparison to the classical spatiotemporal ETAS model and emphasizes the potential for superior modelling and forecasting of seismicity.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"71 5","pages":"1356-1380"},"PeriodicalIF":1.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12579","citationCount":"2","resultStr":"{\"title\":\"Spatiotemporal ETAS model with a renewal main-shock arrival process\",\"authors\":\"Tom Stindl,&nbsp;Feng Chen\",\"doi\":\"10.1111/rssc.12579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a spatiotemporal point process model that enhances the classical Epidemic-Type Aftershock Sequence (ETAS) model. This is achieved with the introduction of a renewal main-shock arrival process and we call this extension the renewal ETAS (RETAS) model. This modification is similar in spirit to the renewal Hawkes (RHawkes) process but the conditional intensity process supports a spatial component. It empowers the main-shock intensity to reset upon the arrival of main-shocks. This allows for heavier clustering of main-shocks than the classical spatiotemporal ETAS model. We introduce a likelihood evaluation algorithm for parameter estimation and provide a novel procedure to evaluate the fitted model's goodness-of-fit (GOF) based on a sequential application of the Rosenblatt transformation. A simulation algorithm for the RETAS model is outlined and used to validate the numerical performance of the likelihood evaluation algorithm and GOF test procedure. We illustrate the proposed model and methods on various earthquake catalogues around the world each with distinctly different seismic activity. These catalogues demonstrate the RETAS model's additional flexibility in comparison to the classical spatiotemporal ETAS model and emphasizes the potential for superior modelling and forecasting of seismicity.</p>\",\"PeriodicalId\":49981,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"volume\":\"71 5\",\"pages\":\"1356-1380\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12579\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12579\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12579","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

提出了一个时空点过程模型,对经典的流行型余震序列(ETAS)模型进行了改进。这是通过引入更新主震到达过程来实现的,我们称之为更新ETAS (RETAS)模型。这种修改在精神上类似于更新Hawkes (RHawkes)过程,但条件强度过程支持空间组件。它使主震强度在主震到达时重新设定。与经典的时空ETAS模型相比,这允许更重的主震聚集。我们引入了一种用于参数估计的似然评估算法,并基于Rosenblatt变换的顺序应用,提出了一种新的方法来评估拟合模型的拟合优度(GOF)。提出了RETAS模型的仿真算法,并利用该算法验证了似然评估算法和GOF测试程序的数值性能。我们在世界各地不同的地震目录上说明了所提出的模型和方法,每个地震都有明显不同的地震活动。这些目录表明,与经典的时空ETAS模型相比,RETAS模型具有额外的灵活性,并强调了在地震活动建模和预测方面的卓越潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spatiotemporal ETAS model with a renewal main-shock arrival process

Spatiotemporal ETAS model with a renewal main-shock arrival process

We propose a spatiotemporal point process model that enhances the classical Epidemic-Type Aftershock Sequence (ETAS) model. This is achieved with the introduction of a renewal main-shock arrival process and we call this extension the renewal ETAS (RETAS) model. This modification is similar in spirit to the renewal Hawkes (RHawkes) process but the conditional intensity process supports a spatial component. It empowers the main-shock intensity to reset upon the arrival of main-shocks. This allows for heavier clustering of main-shocks than the classical spatiotemporal ETAS model. We introduce a likelihood evaluation algorithm for parameter estimation and provide a novel procedure to evaluate the fitted model's goodness-of-fit (GOF) based on a sequential application of the Rosenblatt transformation. A simulation algorithm for the RETAS model is outlined and used to validate the numerical performance of the likelihood evaluation algorithm and GOF test procedure. We illustrate the proposed model and methods on various earthquake catalogues around the world each with distinctly different seismic activity. These catalogues demonstrate the RETAS model's additional flexibility in comparison to the classical spatiotemporal ETAS model and emphasizes the potential for superior modelling and forecasting of seismicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies). A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信