在KPZ区ASEP的动态相变

Peter Nejjar
{"title":"在KPZ区ASEP的动态相变","authors":"Peter Nejjar","doi":"10.1214/21-EJP642","DOIUrl":null,"url":null,"abstract":"We consider the asymmetric simple exclusion process (ASEP) on $\\mathbb{Z}$. For continuous densities, ASEP is in local equilibrium for large times, at discontinuities however, one expects to see a dynamical phase transition, i.e. a mixture of different equilibriums. We consider ASEP with deterministic initial data such that at large times, two rarefactions come together at the origin, and the density jumps from $0$ to $1$. Shifting the measure on the KPZ $1/3$ scale, we show that ASEP converges to a mixture of the Dirac measures with only holes resp. only particles. The parameter of that mixture is the probability that the second class particle, which is distributed as the difference of two independent GUEs, stays to the left of the shift. This should be compared with the results of Ferrari and Fontes from 1994 \\cite{FF94b}, who obtained a mixture of Bernoulli product measures at discontinuities created by random initial data, where instead of independent GUEs, independent Gaussians determine the parameter of the mixture.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"222 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamical phase transition of ASEP in the KPZ regime\",\"authors\":\"Peter Nejjar\",\"doi\":\"10.1214/21-EJP642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the asymmetric simple exclusion process (ASEP) on $\\\\mathbb{Z}$. For continuous densities, ASEP is in local equilibrium for large times, at discontinuities however, one expects to see a dynamical phase transition, i.e. a mixture of different equilibriums. We consider ASEP with deterministic initial data such that at large times, two rarefactions come together at the origin, and the density jumps from $0$ to $1$. Shifting the measure on the KPZ $1/3$ scale, we show that ASEP converges to a mixture of the Dirac measures with only holes resp. only particles. The parameter of that mixture is the probability that the second class particle, which is distributed as the difference of two independent GUEs, stays to the left of the shift. This should be compared with the results of Ferrari and Fontes from 1994 \\\\cite{FF94b}, who obtained a mixture of Bernoulli product measures at discontinuities created by random initial data, where instead of independent GUEs, independent Gaussians determine the parameter of the mixture.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"222 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-EJP642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-EJP642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了$\mathbb{Z}$上的不对称简单不相容过程(ASEP)。对于连续密度,ASEP在很长一段时间内处于局部平衡,然而,在不连续处,人们期望看到动态相变,即不同平衡的混合。我们考虑具有确定性初始数据的ASEP,这样在大时间内,两个稀有元素在原点聚集在一起,密度从$0$跳到$1$。在KPZ $1/3$尺度上移动度量,我们表明ASEP收敛于只有空穴的Dirac度量的混合。只有粒子。该混合物的参数是第二类粒子(分布为两个独立的gue之差)停留在位移左侧的概率。这应该与1994年\cite{FF94b}的Ferrari和Fontes的结果进行比较,他们在随机初始数据产生的不连续处获得了伯努利积测量的混合物,其中独立的高斯函数决定了混合物的参数,而不是独立的gue。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical phase transition of ASEP in the KPZ regime
We consider the asymmetric simple exclusion process (ASEP) on $\mathbb{Z}$. For continuous densities, ASEP is in local equilibrium for large times, at discontinuities however, one expects to see a dynamical phase transition, i.e. a mixture of different equilibriums. We consider ASEP with deterministic initial data such that at large times, two rarefactions come together at the origin, and the density jumps from $0$ to $1$. Shifting the measure on the KPZ $1/3$ scale, we show that ASEP converges to a mixture of the Dirac measures with only holes resp. only particles. The parameter of that mixture is the probability that the second class particle, which is distributed as the difference of two independent GUEs, stays to the left of the shift. This should be compared with the results of Ferrari and Fontes from 1994 \cite{FF94b}, who obtained a mixture of Bernoulli product measures at discontinuities created by random initial data, where instead of independent GUEs, independent Gaussians determine the parameter of the mixture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信