{"title":"加权数和函数的均匀分布","authors":"Ladislav Misík, S. Porubský, O. Strauch","doi":"10.2478/udt-2021-0005","DOIUrl":null,"url":null,"abstract":"Abstract The higher-dimensional generalization of the weighted q-adic sum-of-digits functions sq,γ(n), n =0, 1, 2,..., covers several important cases of sequences investigated in the theory of uniformly distributed sequences, e.g., d-dimensional van der Corput-Halton or d-dimensional Kronecker sequences. We prove a necessary and sufficient condition for the higher-dimensional weighted q-adic sum-of-digits functions to be uniformly distributed modulo one in terms of a trigonometric product. As applications of our condition we prove some upper estimates of the extreme discrepancies of such sequences, and that the existence of distribution function g(x)= x implies the uniform distribution modulo one of the weighted q-adic sum-of-digits function sq,γ (n), n = 0, 1, 2,... We also prove the uniform distribution modulo one of related sequences h1sq, γ (n)+h2sq,γ (n +1), where h1 and h2 are integers such that h1 + h2 ≠ 0 and that the akin two-dimensional sequence sq,γ (n), sq,γ (n +1) cannot be uniformly distributed modulo one if q ≥ 3. The properties of the two-dimensional sequence sq,γ (n),sq,γ (n +1), n =0, 1, 2,..., will be instrumental in the proofs of the final section, where we show how the growth properties of the sequence of weights influence the distribution of values of the weighted sum-of-digits function which in turn imply a new property of the van der Corput sequence.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"1 1","pages":"93 - 126"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform Distribution of the Weighted Sum-of-Digits Functions\",\"authors\":\"Ladislav Misík, S. Porubský, O. Strauch\",\"doi\":\"10.2478/udt-2021-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The higher-dimensional generalization of the weighted q-adic sum-of-digits functions sq,γ(n), n =0, 1, 2,..., covers several important cases of sequences investigated in the theory of uniformly distributed sequences, e.g., d-dimensional van der Corput-Halton or d-dimensional Kronecker sequences. We prove a necessary and sufficient condition for the higher-dimensional weighted q-adic sum-of-digits functions to be uniformly distributed modulo one in terms of a trigonometric product. As applications of our condition we prove some upper estimates of the extreme discrepancies of such sequences, and that the existence of distribution function g(x)= x implies the uniform distribution modulo one of the weighted q-adic sum-of-digits function sq,γ (n), n = 0, 1, 2,... We also prove the uniform distribution modulo one of related sequences h1sq, γ (n)+h2sq,γ (n +1), where h1 and h2 are integers such that h1 + h2 ≠ 0 and that the akin two-dimensional sequence sq,γ (n), sq,γ (n +1) cannot be uniformly distributed modulo one if q ≥ 3. The properties of the two-dimensional sequence sq,γ (n),sq,γ (n +1), n =0, 1, 2,..., will be instrumental in the proofs of the final section, where we show how the growth properties of the sequence of weights influence the distribution of values of the weighted sum-of-digits function which in turn imply a new property of the van der Corput sequence.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"1 1\",\"pages\":\"93 - 126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2021-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2021-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
加权q进数和函数sq,γ(n), n = 0,1,2,…的高维推广,涵盖了均匀分布序列理论中研究序列的几个重要情况,例如d维van der Corput-Halton或d维Kronecker序列。证明了高维加权q进数和函数以三角积形式模为1的均匀分布的一个充要条件。作为我们条件的应用,我们证明了这类序列的极差的一些上估计,并且证明了分布函数g(x)= x的存在性暗示了加权q进数和函数sq,γ (n), n = 0,1,2,…我们还证明了相关序列h1sq, γ (n)+h2sq,γ (n +1)的模1均匀分布,其中h1和h2是整数,使得h1 +h2≠0,并且类似的二维序列sq,γ (n), sq,γ (n +1)在q≥3时不能是模1均匀分布。二维序列sq,γ (n),sq,γ (n +1), n = 0,1,2,…的性质在最后一节的证明中,我们将展示权重序列的增长性质如何影响加权数字和函数的值分布,这反过来又暗示了van der Corput序列的一个新性质。
Uniform Distribution of the Weighted Sum-of-Digits Functions
Abstract The higher-dimensional generalization of the weighted q-adic sum-of-digits functions sq,γ(n), n =0, 1, 2,..., covers several important cases of sequences investigated in the theory of uniformly distributed sequences, e.g., d-dimensional van der Corput-Halton or d-dimensional Kronecker sequences. We prove a necessary and sufficient condition for the higher-dimensional weighted q-adic sum-of-digits functions to be uniformly distributed modulo one in terms of a trigonometric product. As applications of our condition we prove some upper estimates of the extreme discrepancies of such sequences, and that the existence of distribution function g(x)= x implies the uniform distribution modulo one of the weighted q-adic sum-of-digits function sq,γ (n), n = 0, 1, 2,... We also prove the uniform distribution modulo one of related sequences h1sq, γ (n)+h2sq,γ (n +1), where h1 and h2 are integers such that h1 + h2 ≠ 0 and that the akin two-dimensional sequence sq,γ (n), sq,γ (n +1) cannot be uniformly distributed modulo one if q ≥ 3. The properties of the two-dimensional sequence sq,γ (n),sq,γ (n +1), n =0, 1, 2,..., will be instrumental in the proofs of the final section, where we show how the growth properties of the sequence of weights influence the distribution of values of the weighted sum-of-digits function which in turn imply a new property of the van der Corput sequence.