利用高斯混合模型分离第二心音

Renna Francesco, Coimbra Miguel
{"title":"利用高斯混合模型分离第二心音","authors":"Renna Francesco, Coimbra Miguel","doi":"10.22489/cinc.2019.236","DOIUrl":null,"url":null,"abstract":"In this work, we present a method to separate aortic (A2) and pulmonary (P2) components from second heart sounds (S2). The proposed approach captures the different dynamical behavior of A2 and P2 components via a joint Gaussian mixture model, which is then used to perform separation via a closed-form conditional mean estimator. The proposed approach is tested over synthetic heart sounds and it is shown guarantee a reduction of approximately 25% of the normalized root mean-squared error incurred in signal separation, with respect to a previously presented approach in the literature.","PeriodicalId":6716,"journal":{"name":"2019 Computing in Cardiology Conference (CinC)","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Source Separation of the Second Heart Sound Using Gaussian Mixture Models\",\"authors\":\"Renna Francesco, Coimbra Miguel\",\"doi\":\"10.22489/cinc.2019.236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a method to separate aortic (A2) and pulmonary (P2) components from second heart sounds (S2). The proposed approach captures the different dynamical behavior of A2 and P2 components via a joint Gaussian mixture model, which is then used to perform separation via a closed-form conditional mean estimator. The proposed approach is tested over synthetic heart sounds and it is shown guarantee a reduction of approximately 25% of the normalized root mean-squared error incurred in signal separation, with respect to a previously presented approach in the literature.\",\"PeriodicalId\":6716,\"journal\":{\"name\":\"2019 Computing in Cardiology Conference (CinC)\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/cinc.2019.236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/cinc.2019.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一种从第二心音(S2)中分离主动脉(A2)和肺动脉(P2)成分的方法。该方法通过联合高斯混合模型捕获A2和P2组分的不同动态行为,然后通过封闭形式条件平均估计器进行分离。所提出的方法在合成心音上进行了测试,结果表明,与文献中先前提出的方法相比,它可以保证将信号分离中产生的归一化均方根误差减少约25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Source Separation of the Second Heart Sound Using Gaussian Mixture Models
In this work, we present a method to separate aortic (A2) and pulmonary (P2) components from second heart sounds (S2). The proposed approach captures the different dynamical behavior of A2 and P2 components via a joint Gaussian mixture model, which is then used to perform separation via a closed-form conditional mean estimator. The proposed approach is tested over synthetic heart sounds and it is shown guarantee a reduction of approximately 25% of the normalized root mean-squared error incurred in signal separation, with respect to a previously presented approach in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信