基于稀疏贝叶斯RVM回归的IM/DD OFDM-VLC系统信道估计

Chen Chen, W. Zhong, Lifan Zhao
{"title":"基于稀疏贝叶斯RVM回归的IM/DD OFDM-VLC系统信道估计","authors":"Chen Chen, W. Zhong, Lifan Zhao","doi":"10.1109/ICCW.2017.7962651","DOIUrl":null,"url":null,"abstract":"We propose a novel channel estimation technique for intensity modulation/direct detection (IM/DD) based orthogonal frequency division multiplexing visible light communication (OFDM-VLC) systems, utilizing sparse Bayesian dual-variate relevance vector machine (RVM) regression. By exploiting sparse Bayesian framework, dual-variate RVM regression can provide accurate estimation of the real and imaginary parts of the complex channel response, and therefore the channel response can be estimated to perform channel compensation. Simulation results show that a 200 Mb/s OFDM-VLC system using sparse Bayesian RVM regression based channel estimation with only one complex training symbol (TS) achieves nearly the same bit error rate (BER) performance as the system using conventional time domain averaging (TDA) based channel estimation with a total of 20 complex TSs, indicating a significant reduction of training overhead. Moreover, by employing a fast marginal likelihood maximization method, the sparse Bayesian RVM regression based channel estimation can be computational efficient for practical application in high-speed OFDM-VLC systems.","PeriodicalId":6656,"journal":{"name":"2017 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"192 1","pages":"162-167"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sparse Bayesian RVM regression based channel estimation for IM/DD OFDM-VLC systems with reduced training overhead\",\"authors\":\"Chen Chen, W. Zhong, Lifan Zhao\",\"doi\":\"10.1109/ICCW.2017.7962651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel channel estimation technique for intensity modulation/direct detection (IM/DD) based orthogonal frequency division multiplexing visible light communication (OFDM-VLC) systems, utilizing sparse Bayesian dual-variate relevance vector machine (RVM) regression. By exploiting sparse Bayesian framework, dual-variate RVM regression can provide accurate estimation of the real and imaginary parts of the complex channel response, and therefore the channel response can be estimated to perform channel compensation. Simulation results show that a 200 Mb/s OFDM-VLC system using sparse Bayesian RVM regression based channel estimation with only one complex training symbol (TS) achieves nearly the same bit error rate (BER) performance as the system using conventional time domain averaging (TDA) based channel estimation with a total of 20 complex TSs, indicating a significant reduction of training overhead. Moreover, by employing a fast marginal likelihood maximization method, the sparse Bayesian RVM regression based channel estimation can be computational efficient for practical application in high-speed OFDM-VLC systems.\",\"PeriodicalId\":6656,\"journal\":{\"name\":\"2017 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"192 1\",\"pages\":\"162-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCW.2017.7962651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2017.7962651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种新的基于强度调制/直接检测(IM/DD)的正交频分复用可见光通信(OFDM-VLC)系统的信道估计技术,利用稀疏贝叶斯双变量相关向量机(RVM)回归。利用稀疏贝叶斯框架,双变量RVM回归可以准确估计复杂信道响应的实部和虚部,从而估计信道响应并进行信道补偿。仿真结果表明,在200 Mb/s的OFDM-VLC系统中,使用基于稀疏贝叶斯RVM回归的信道估计,仅使用一个复杂训练符号(TS),与使用基于传统时域平均(TDA)的信道估计(总共使用20个复杂训练符号)的系统获得了几乎相同的误码率(BER)性能,表明显著降低了训练开销。此外,采用快速边际似然最大化方法,稀疏贝叶斯RVM回归的信道估计计算效率高,适合高速OFDM-VLC系统的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Bayesian RVM regression based channel estimation for IM/DD OFDM-VLC systems with reduced training overhead
We propose a novel channel estimation technique for intensity modulation/direct detection (IM/DD) based orthogonal frequency division multiplexing visible light communication (OFDM-VLC) systems, utilizing sparse Bayesian dual-variate relevance vector machine (RVM) regression. By exploiting sparse Bayesian framework, dual-variate RVM regression can provide accurate estimation of the real and imaginary parts of the complex channel response, and therefore the channel response can be estimated to perform channel compensation. Simulation results show that a 200 Mb/s OFDM-VLC system using sparse Bayesian RVM regression based channel estimation with only one complex training symbol (TS) achieves nearly the same bit error rate (BER) performance as the system using conventional time domain averaging (TDA) based channel estimation with a total of 20 complex TSs, indicating a significant reduction of training overhead. Moreover, by employing a fast marginal likelihood maximization method, the sparse Bayesian RVM regression based channel estimation can be computational efficient for practical application in high-speed OFDM-VLC systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信