选择性Rips配合物的重构性质

Pub Date : 2022-06-28 DOI:10.3336/gm.57.1.06
Boštjan Lemež, Žiga Virk
{"title":"选择性Rips配合物的重构性质","authors":"Boštjan Lemež, Žiga Virk","doi":"10.3336/gm.57.1.06","DOIUrl":null,"url":null,"abstract":"Selective Rips complexes associated to two parameters are certain subcomplexes of Rips complexes consisting of thin simplices. They are designed to detect more closed geodesics than their Rips counterparts. In this paper we introduce a general definition of selective Rips complexes with countably many parameters and prove basic reconstruction properties associated with them. In particular, we prove that selective Rips complexes of a closed Riemannian manifold \\(X\\) attain the homotopy type of \\(X\\) at small scales.\nWe also completely classify the resulting persistent fundamental group and \\(1\\)-dimensional persistent homology.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reconstruction properties of selective Rips complexes\",\"authors\":\"Boštjan Lemež, Žiga Virk\",\"doi\":\"10.3336/gm.57.1.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective Rips complexes associated to two parameters are certain subcomplexes of Rips complexes consisting of thin simplices. They are designed to detect more closed geodesics than their Rips counterparts. In this paper we introduce a general definition of selective Rips complexes with countably many parameters and prove basic reconstruction properties associated with them. In particular, we prove that selective Rips complexes of a closed Riemannian manifold \\\\(X\\\\) attain the homotopy type of \\\\(X\\\\) at small scales.\\nWe also completely classify the resulting persistent fundamental group and \\\\(1\\\\)-dimensional persistent homology.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.57.1.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

与两个参数相关的选择性Rips配合物是由薄单质组成的Rips配合物的某些亚配合物。它们被设计用来探测比Rips更封闭的测地线。本文给出了具有可数多参数的选择性撕裂配合物的一般定义,并证明了与之相关的基本重构性质。特别地,我们证明了闭黎曼流形\(X\)的选择性Rips配合物在小尺度上达到\(X\)的同伦类型。我们还完全分类了得到的持久基群和\(1\) -维持久同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Reconstruction properties of selective Rips complexes
Selective Rips complexes associated to two parameters are certain subcomplexes of Rips complexes consisting of thin simplices. They are designed to detect more closed geodesics than their Rips counterparts. In this paper we introduce a general definition of selective Rips complexes with countably many parameters and prove basic reconstruction properties associated with them. In particular, we prove that selective Rips complexes of a closed Riemannian manifold \(X\) attain the homotopy type of \(X\) at small scales. We also completely classify the resulting persistent fundamental group and \(1\)-dimensional persistent homology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信