SPRINT:智能交通的子图位置识别

Y. Latif, Anh-Dzung Doan, Tat-Jun Chin, I. Reid
{"title":"SPRINT:智能交通的子图位置识别","authors":"Y. Latif, Anh-Dzung Doan, Tat-Jun Chin, I. Reid","doi":"10.1109/ICRA40945.2020.9196522","DOIUrl":null,"url":null,"abstract":"Visual place recognition is an important problem in mobile robotics which aims to localize a robot using image information alone. Recent methods have shown promising results for place recognition under varying environmental conditions by exploiting the sequential nature of the image acquision process. We show that by using k nearest neighbours based image retrieval as the backend, and exploiting the structure of the image acquisition process which introduces temporal relations between images in the database, the location of possible matches can be restricted to a subset of all the images seen so far. In effect, the original problem space can thus be restricted to a significantly smaller subspace, reducing the inference time significantly. This is particularly important for scalable place recognition over databases containing millions of images. We present large scale experiments using publicly sourced data that show the computational performance of the proposed method under varying environmental conditions.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"35 1","pages":"5408-5414"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SPRINT: Subgraph Place Recognition for INtelligent Transportation\",\"authors\":\"Y. Latif, Anh-Dzung Doan, Tat-Jun Chin, I. Reid\",\"doi\":\"10.1109/ICRA40945.2020.9196522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual place recognition is an important problem in mobile robotics which aims to localize a robot using image information alone. Recent methods have shown promising results for place recognition under varying environmental conditions by exploiting the sequential nature of the image acquision process. We show that by using k nearest neighbours based image retrieval as the backend, and exploiting the structure of the image acquisition process which introduces temporal relations between images in the database, the location of possible matches can be restricted to a subset of all the images seen so far. In effect, the original problem space can thus be restricted to a significantly smaller subspace, reducing the inference time significantly. This is particularly important for scalable place recognition over databases containing millions of images. We present large scale experiments using publicly sourced data that show the computational performance of the proposed method under varying environmental conditions.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"35 1\",\"pages\":\"5408-5414\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9196522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

视觉位置识别是移动机器人技术中的一个重要问题,其目的是仅利用图像信息对机器人进行定位。最近的方法通过利用图像采集过程的顺序性,在不同的环境条件下显示出有希望的位置识别结果。我们表明,通过使用基于k近邻的图像检索作为后端,并利用图像采集过程的结构,该结构引入了数据库中图像之间的时间关系,可能匹配的位置可以限制为迄今为止所看到的所有图像的一个子集。实际上,原始问题空间因此可以被限制到一个更小的子空间,从而大大减少了推理时间。这对于包含数百万图像的数据库的可扩展位置识别尤其重要。我们展示了使用公开来源数据的大规模实验,这些实验显示了所提出的方法在不同环境条件下的计算性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPRINT: Subgraph Place Recognition for INtelligent Transportation
Visual place recognition is an important problem in mobile robotics which aims to localize a robot using image information alone. Recent methods have shown promising results for place recognition under varying environmental conditions by exploiting the sequential nature of the image acquision process. We show that by using k nearest neighbours based image retrieval as the backend, and exploiting the structure of the image acquisition process which introduces temporal relations between images in the database, the location of possible matches can be restricted to a subset of all the images seen so far. In effect, the original problem space can thus be restricted to a significantly smaller subspace, reducing the inference time significantly. This is particularly important for scalable place recognition over databases containing millions of images. We present large scale experiments using publicly sourced data that show the computational performance of the proposed method under varying environmental conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信