形式三角矩阵环上的Gorenstein ac -射影模和ac -内射模

Pub Date : 2022-07-26 DOI:10.1142/s1005386722000360
Dejun Wu, Hui-Shan Zhou
{"title":"形式三角矩阵环上的Gorenstein ac -射影模和ac -内射模","authors":"Dejun Wu, Hui-Shan Zhou","doi":"10.1142/s1005386722000360","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] and [Formula: see text] be rings and [Formula: see text] a [Formula: see text]-bimodule. If [Formula: see text] is flat and [Formula: see text] is finitely generated projective (resp., [Formula: see text] is finitely generated projective and [Formula: see text] is flat), then the characterizations of level modules and Gorenstein AC-projective modules (resp., absolutely clean modules and Gorenstein AC-injective modules) over the formal triangular matrix ring [Formula: see text] are given. As applications, it is proved that every Gorenstein AC-projective left [Formula: see text]-module is projective if and only if each Gorenstein AC-projective left [Formula: see text]-module and [Formula: see text]-module is projective, and every Gorenstein AC-injective left [Formula: see text]-module is injective if and only if each Gorenstein AC-injective left [Formula: see text]-module and [Formula: see text]-module is injective. Moreover, Gorenstein AC-projective and AC-injective dimensions over the formal triangular matrix ring [Formula: see text] are studied.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gorenstein AC-Projective and AC-Injective Modules over Formal Triangular Matrix Rings\",\"authors\":\"Dejun Wu, Hui-Shan Zhou\",\"doi\":\"10.1142/s1005386722000360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] and [Formula: see text] be rings and [Formula: see text] a [Formula: see text]-bimodule. If [Formula: see text] is flat and [Formula: see text] is finitely generated projective (resp., [Formula: see text] is finitely generated projective and [Formula: see text] is flat), then the characterizations of level modules and Gorenstein AC-projective modules (resp., absolutely clean modules and Gorenstein AC-injective modules) over the formal triangular matrix ring [Formula: see text] are given. As applications, it is proved that every Gorenstein AC-projective left [Formula: see text]-module is projective if and only if each Gorenstein AC-projective left [Formula: see text]-module and [Formula: see text]-module is projective, and every Gorenstein AC-injective left [Formula: see text]-module is injective if and only if each Gorenstein AC-injective left [Formula: see text]-module and [Formula: see text]-module is injective. Moreover, Gorenstein AC-projective and AC-injective dimensions over the formal triangular matrix ring [Formula: see text] are studied.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]和[公式:见文]为环,[公式:见文]为双模。如果[Formula: see text]是平面的,而[Formula: see text]是有限生成的投影(见图1)。,[公式:见文]是有限生成的投影,[公式:见文]是平面的),那么关卡模块和Gorenstein ac -投影模块的特征(见文)。给出了形式三角矩阵环上的绝对清洁模和Gorenstein ac -内射模[公式:见文]。作为应用,证明了当且仅当每个Gorenstein ac -射影左[公式:见文]-模都是射影,当且仅当每个Gorenstein ac -射影左[公式:见文]-模都是射影,并且每个Gorenstein ac -内射左[公式:见文]-模都是内射,当且仅当每个Gorenstein ac -内射左[公式:见文]-模都是内射。此外,研究了形式三角矩阵环上的Gorenstein ac -射影维数和ac -内射维数[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Gorenstein AC-Projective and AC-Injective Modules over Formal Triangular Matrix Rings
Let [Formula: see text] and [Formula: see text] be rings and [Formula: see text] a [Formula: see text]-bimodule. If [Formula: see text] is flat and [Formula: see text] is finitely generated projective (resp., [Formula: see text] is finitely generated projective and [Formula: see text] is flat), then the characterizations of level modules and Gorenstein AC-projective modules (resp., absolutely clean modules and Gorenstein AC-injective modules) over the formal triangular matrix ring [Formula: see text] are given. As applications, it is proved that every Gorenstein AC-projective left [Formula: see text]-module is projective if and only if each Gorenstein AC-projective left [Formula: see text]-module and [Formula: see text]-module is projective, and every Gorenstein AC-injective left [Formula: see text]-module is injective if and only if each Gorenstein AC-injective left [Formula: see text]-module and [Formula: see text]-module is injective. Moreover, Gorenstein AC-projective and AC-injective dimensions over the formal triangular matrix ring [Formula: see text] are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信