{"title":"形式三角矩阵环上的Gorenstein ac -射影模和ac -内射模","authors":"Dejun Wu, Hui-Shan Zhou","doi":"10.1142/s1005386722000360","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] and [Formula: see text] be rings and [Formula: see text] a [Formula: see text]-bimodule. If [Formula: see text] is flat and [Formula: see text] is finitely generated projective (resp., [Formula: see text] is finitely generated projective and [Formula: see text] is flat), then the characterizations of level modules and Gorenstein AC-projective modules (resp., absolutely clean modules and Gorenstein AC-injective modules) over the formal triangular matrix ring [Formula: see text] are given. As applications, it is proved that every Gorenstein AC-projective left [Formula: see text]-module is projective if and only if each Gorenstein AC-projective left [Formula: see text]-module and [Formula: see text]-module is projective, and every Gorenstein AC-injective left [Formula: see text]-module is injective if and only if each Gorenstein AC-injective left [Formula: see text]-module and [Formula: see text]-module is injective. Moreover, Gorenstein AC-projective and AC-injective dimensions over the formal triangular matrix ring [Formula: see text] are studied.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gorenstein AC-Projective and AC-Injective Modules over Formal Triangular Matrix Rings\",\"authors\":\"Dejun Wu, Hui-Shan Zhou\",\"doi\":\"10.1142/s1005386722000360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] and [Formula: see text] be rings and [Formula: see text] a [Formula: see text]-bimodule. If [Formula: see text] is flat and [Formula: see text] is finitely generated projective (resp., [Formula: see text] is finitely generated projective and [Formula: see text] is flat), then the characterizations of level modules and Gorenstein AC-projective modules (resp., absolutely clean modules and Gorenstein AC-injective modules) over the formal triangular matrix ring [Formula: see text] are given. As applications, it is proved that every Gorenstein AC-projective left [Formula: see text]-module is projective if and only if each Gorenstein AC-projective left [Formula: see text]-module and [Formula: see text]-module is projective, and every Gorenstein AC-injective left [Formula: see text]-module is injective if and only if each Gorenstein AC-injective left [Formula: see text]-module and [Formula: see text]-module is injective. Moreover, Gorenstein AC-projective and AC-injective dimensions over the formal triangular matrix ring [Formula: see text] are studied.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设[公式:见文]和[公式:见文]为环,[公式:见文]为双模。如果[Formula: see text]是平面的,而[Formula: see text]是有限生成的投影(见图1)。,[公式:见文]是有限生成的投影,[公式:见文]是平面的),那么关卡模块和Gorenstein ac -投影模块的特征(见文)。给出了形式三角矩阵环上的绝对清洁模和Gorenstein ac -内射模[公式:见文]。作为应用,证明了当且仅当每个Gorenstein ac -射影左[公式:见文]-模都是射影,当且仅当每个Gorenstein ac -射影左[公式:见文]-模都是射影,并且每个Gorenstein ac -内射左[公式:见文]-模都是内射,当且仅当每个Gorenstein ac -内射左[公式:见文]-模都是内射。此外,研究了形式三角矩阵环上的Gorenstein ac -射影维数和ac -内射维数[公式:见文]。
Gorenstein AC-Projective and AC-Injective Modules over Formal Triangular Matrix Rings
Let [Formula: see text] and [Formula: see text] be rings and [Formula: see text] a [Formula: see text]-bimodule. If [Formula: see text] is flat and [Formula: see text] is finitely generated projective (resp., [Formula: see text] is finitely generated projective and [Formula: see text] is flat), then the characterizations of level modules and Gorenstein AC-projective modules (resp., absolutely clean modules and Gorenstein AC-injective modules) over the formal triangular matrix ring [Formula: see text] are given. As applications, it is proved that every Gorenstein AC-projective left [Formula: see text]-module is projective if and only if each Gorenstein AC-projective left [Formula: see text]-module and [Formula: see text]-module is projective, and every Gorenstein AC-injective left [Formula: see text]-module is injective if and only if each Gorenstein AC-injective left [Formula: see text]-module and [Formula: see text]-module is injective. Moreover, Gorenstein AC-projective and AC-injective dimensions over the formal triangular matrix ring [Formula: see text] are studied.