{"title":"关于Zq上的常数组合码","authors":"Luo Yuan, Fang-Wei Fu, A. Vinck, Wende Chen","doi":"10.1109/TIT.2003.819339","DOIUrl":null,"url":null,"abstract":"A constant-composition code is a special constant-weight code under the restriction that each symbol should appear a given number of times in each codeword. In this correspondence, we give a lower bound for the maximum size of the q-ary constant-composition codes with minimum distance at least 3. This bound is asymptotically optimal and generalizes the Graham-Sloane bound for binary constant-weight codes. In addition, three construction methods of constant-composition codes are presented, and a number of optimum constant-composition codes are obtained by using these constructions.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"111 1","pages":"3010-3016"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"On constant-composition codes over Zq\",\"authors\":\"Luo Yuan, Fang-Wei Fu, A. Vinck, Wende Chen\",\"doi\":\"10.1109/TIT.2003.819339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A constant-composition code is a special constant-weight code under the restriction that each symbol should appear a given number of times in each codeword. In this correspondence, we give a lower bound for the maximum size of the q-ary constant-composition codes with minimum distance at least 3. This bound is asymptotically optimal and generalizes the Graham-Sloane bound for binary constant-weight codes. In addition, three construction methods of constant-composition codes are presented, and a number of optimum constant-composition codes are obtained by using these constructions.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"111 1\",\"pages\":\"3010-3016\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIT.2003.819339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.819339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A constant-composition code is a special constant-weight code under the restriction that each symbol should appear a given number of times in each codeword. In this correspondence, we give a lower bound for the maximum size of the q-ary constant-composition codes with minimum distance at least 3. This bound is asymptotically optimal and generalizes the Graham-Sloane bound for binary constant-weight codes. In addition, three construction methods of constant-composition codes are presented, and a number of optimum constant-composition codes are obtained by using these constructions.