{"title":"领导-随从任务中人机交互的振动触觉反馈","authors":"S. Scheggi, Francesco Chinello, D. Prattichizzo","doi":"10.1145/2413097.2413161","DOIUrl":null,"url":null,"abstract":"In this paper we explore a vibrotactile feedback paradigm which allows the human to intuitively interact in human-robot applications. In particular we focus on a haptic bracelet which helps the human to move along trajectories that are feasible for the leader-follower formation tasks. The bracelet consists of three vibrating motors circling the forearm and represents a non invasive way to provide essential information to the human. Experiments performed on a public of 15 subjects revealed the effectiveness of the proposed device.","PeriodicalId":91811,"journal":{"name":"The ... International Conference on PErvasive Technologies Related to Assistive Environments : PETRA ... International Conference on PErvasive Technologies Related to Assistive Environments","volume":"111 1","pages":"51"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Vibrotactile haptic feedback for human-robot interaction in leader-follower tasks\",\"authors\":\"S. Scheggi, Francesco Chinello, D. Prattichizzo\",\"doi\":\"10.1145/2413097.2413161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we explore a vibrotactile feedback paradigm which allows the human to intuitively interact in human-robot applications. In particular we focus on a haptic bracelet which helps the human to move along trajectories that are feasible for the leader-follower formation tasks. The bracelet consists of three vibrating motors circling the forearm and represents a non invasive way to provide essential information to the human. Experiments performed on a public of 15 subjects revealed the effectiveness of the proposed device.\",\"PeriodicalId\":91811,\"journal\":{\"name\":\"The ... International Conference on PErvasive Technologies Related to Assistive Environments : PETRA ... International Conference on PErvasive Technologies Related to Assistive Environments\",\"volume\":\"111 1\",\"pages\":\"51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ... International Conference on PErvasive Technologies Related to Assistive Environments : PETRA ... International Conference on PErvasive Technologies Related to Assistive Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2413097.2413161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ... International Conference on PErvasive Technologies Related to Assistive Environments : PETRA ... International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2413097.2413161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vibrotactile haptic feedback for human-robot interaction in leader-follower tasks
In this paper we explore a vibrotactile feedback paradigm which allows the human to intuitively interact in human-robot applications. In particular we focus on a haptic bracelet which helps the human to move along trajectories that are feasible for the leader-follower formation tasks. The bracelet consists of three vibrating motors circling the forearm and represents a non invasive way to provide essential information to the human. Experiments performed on a public of 15 subjects revealed the effectiveness of the proposed device.