高强度散粒噪声场临界能级的渐近性和强不变性原理

IF 1.5 Q2 PHYSICS, MATHEMATICAL
R. Lachièze-Rey, S. Muirhead
{"title":"高强度散粒噪声场临界能级的渐近性和强不变性原理","authors":"R. Lachièze-Rey, S. Muirhead","doi":"10.1214/22-aihp1303","DOIUrl":null,"url":null,"abstract":"We study fine properties of the convergence of a high intensity shot noise field towards the Gaussian field with the same covariance structure. In particular we (i) establish a strong invariance principle, i.e. a quantitative coupling between a high intensity shot noise field and the Gaussian limit such that they are uniformly close on large domains with high probability, and (ii) use this to derive an asymptotic expansion for the critical level above which the excursion sets of the shot noise field percolate.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":"21 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymptotics for the critical level and a strong invariance principle for high intensity shot noise fields\",\"authors\":\"R. Lachièze-Rey, S. Muirhead\",\"doi\":\"10.1214/22-aihp1303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study fine properties of the convergence of a high intensity shot noise field towards the Gaussian field with the same covariance structure. In particular we (i) establish a strong invariance principle, i.e. a quantitative coupling between a high intensity shot noise field and the Gaussian limit such that they are uniformly close on large domains with high probability, and (ii) use this to derive an asymptotic expansion for the critical level above which the excursion sets of the shot noise field percolate.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aihp1303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有相同协方差结构的高强度散粒噪声场向高斯场收敛的精细性质。特别是,我们(i)建立了强不变性原理,即高强度散粒噪声场和高斯极限之间的定量耦合,使它们在大域上以高概率均匀接近,并且(ii)利用这一点推导出散粒噪声场偏移集渗透的临界水平的渐近展开式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics for the critical level and a strong invariance principle for high intensity shot noise fields
We study fine properties of the convergence of a high intensity shot noise field towards the Gaussian field with the same covariance structure. In particular we (i) establish a strong invariance principle, i.e. a quantitative coupling between a high intensity shot noise field and the Gaussian limit such that they are uniformly close on large domains with high probability, and (ii) use this to derive an asymptotic expansion for the critical level above which the excursion sets of the shot noise field percolate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信