重尾收益分布下风险价值管理的离散时间投资组合优化

Subhojit Biswas, Diganta Mukherjee
{"title":"重尾收益分布下风险价值管理的离散时间投资组合优化","authors":"Subhojit Biswas, Diganta Mukherjee","doi":"10.1504/ijmmno.2020.10031727","DOIUrl":null,"url":null,"abstract":"We consider an investor, whose portfolio consists of a single risky asset and a risk free asset, who wants to maximize his expected utility of the portfolio subject to the Value at Risk assuming a heavy tail distribution of the stock prices return. We use Markov Decision Process and dynamic programming principle to get the optimal strategies and the value function which maximize the expected utility for parametric as well as non parametric distributions. Due to lack of explicit solution in the non parametric case, we use numerical integration for optimization","PeriodicalId":13553,"journal":{"name":"Int. J. Math. Model. Numer. Optimisation","volume":"136 1","pages":"424-450"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete time portfolio optimisation managing value at risk under heavy tail return distribution\",\"authors\":\"Subhojit Biswas, Diganta Mukherjee\",\"doi\":\"10.1504/ijmmno.2020.10031727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an investor, whose portfolio consists of a single risky asset and a risk free asset, who wants to maximize his expected utility of the portfolio subject to the Value at Risk assuming a heavy tail distribution of the stock prices return. We use Markov Decision Process and dynamic programming principle to get the optimal strategies and the value function which maximize the expected utility for parametric as well as non parametric distributions. Due to lack of explicit solution in the non parametric case, we use numerical integration for optimization\",\"PeriodicalId\":13553,\"journal\":{\"name\":\"Int. J. Math. Model. Numer. Optimisation\",\"volume\":\"136 1\",\"pages\":\"424-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Math. Model. Numer. Optimisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmmno.2020.10031727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Math. Model. Numer. Optimisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmmno.2020.10031727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑一个投资者,他的投资组合由一个单一的风险资产和一个无风险资产组成,他希望最大化他的投资组合的预期效用,受风险价值的影响,假设股票价格回报的重尾分布。利用马尔可夫决策过程和动态规划原理,对参数分布和非参数分布分别求出期望效用最大化的最优策略和值函数。由于在非参数情况下缺乏显式解,我们使用数值积分进行优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete time portfolio optimisation managing value at risk under heavy tail return distribution
We consider an investor, whose portfolio consists of a single risky asset and a risk free asset, who wants to maximize his expected utility of the portfolio subject to the Value at Risk assuming a heavy tail distribution of the stock prices return. We use Markov Decision Process and dynamic programming principle to get the optimal strategies and the value function which maximize the expected utility for parametric as well as non parametric distributions. Due to lack of explicit solution in the non parametric case, we use numerical integration for optimization
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信