{"title":"重尾收益分布下风险价值管理的离散时间投资组合优化","authors":"Subhojit Biswas, Diganta Mukherjee","doi":"10.1504/ijmmno.2020.10031727","DOIUrl":null,"url":null,"abstract":"We consider an investor, whose portfolio consists of a single risky asset and a risk free asset, who wants to maximize his expected utility of the portfolio subject to the Value at Risk assuming a heavy tail distribution of the stock prices return. We use Markov Decision Process and dynamic programming principle to get the optimal strategies and the value function which maximize the expected utility for parametric as well as non parametric distributions. Due to lack of explicit solution in the non parametric case, we use numerical integration for optimization","PeriodicalId":13553,"journal":{"name":"Int. J. Math. Model. Numer. Optimisation","volume":"136 1","pages":"424-450"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrete time portfolio optimisation managing value at risk under heavy tail return distribution\",\"authors\":\"Subhojit Biswas, Diganta Mukherjee\",\"doi\":\"10.1504/ijmmno.2020.10031727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an investor, whose portfolio consists of a single risky asset and a risk free asset, who wants to maximize his expected utility of the portfolio subject to the Value at Risk assuming a heavy tail distribution of the stock prices return. We use Markov Decision Process and dynamic programming principle to get the optimal strategies and the value function which maximize the expected utility for parametric as well as non parametric distributions. Due to lack of explicit solution in the non parametric case, we use numerical integration for optimization\",\"PeriodicalId\":13553,\"journal\":{\"name\":\"Int. J. Math. Model. Numer. Optimisation\",\"volume\":\"136 1\",\"pages\":\"424-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Math. Model. Numer. Optimisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmmno.2020.10031727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Math. Model. Numer. Optimisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmmno.2020.10031727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete time portfolio optimisation managing value at risk under heavy tail return distribution
We consider an investor, whose portfolio consists of a single risky asset and a risk free asset, who wants to maximize his expected utility of the portfolio subject to the Value at Risk assuming a heavy tail distribution of the stock prices return. We use Markov Decision Process and dynamic programming principle to get the optimal strategies and the value function which maximize the expected utility for parametric as well as non parametric distributions. Due to lack of explicit solution in the non parametric case, we use numerical integration for optimization