Pemodelan Harga加密货币Menggunakan Markov开关自回归

Akhmad Ridho Ashariansyah, Nur Iriawan, Adatul Mukarromah
{"title":"Pemodelan Harga加密货币Menggunakan Markov开关自回归","authors":"Akhmad Ridho Ashariansyah, Nur Iriawan, Adatul Mukarromah","doi":"10.12962/j27213862.v3i2.7726","DOIUrl":null,"url":null,"abstract":"Perdagangan merupakan sebuah kegiatan tukar menukar barang atau jasa yang dilakukan manusia untuk memenuhi kebutuhan hidup. Perkembangan sistem pembayaran yang dilakukan umat manusia dimulai dari sistem pertukaran barang atau barter, logam mulia seperti emas dan perak, koin, uang kartal, uang giral, dan uang elektronik (e-money). Selain itu, muncul cryptocurrency yaitu mata uang digital dengan sistem kriptografi dalam setiap proses transaksi datanya tanpa melalui pihak ketiga. Namun cryptocurrency memiliki kelemahan perubahan harga yang sangat besar dalam waktu yang sangat cepat. Pergerakan harga yang berfluktuasi sangat tinggi tersebut menyebabkan kekhawatiran pemilik aset kripto mengalami kerugian, maka pemodelan harga cryptocurrency sangat penting untuk dilakukan agar meminimalisir risiko kerugi-an. Berdasarkan pola pergerakan harga yang berfluktuasi sangat tinggi yang berbeda tiap periodenya maka dilakukanlah pemodelan harga cryptocurrency mengguna-kan Markov Switching Autoregressive (MSAR) dengan algoritma Expectation Maximization. Selain meminimkan risiko kerugian, penelitian ini juga ingin mengetahui model MSAR mana yang mampu mengklasifikasikan state dengan baik. Data yang digunakan yaitu harga harian cryptocurrency dengan nilai kapitalisasi pasar terbesar dari September 2015 hingga Januari 2020. Hasil penelitian menunjukkan bahwa bitcoin dan ripple menggunakan model MS(8)AR(1), sedangkan ethereum menggunakan model MS(9)AR(1). Selain itu model MS(8)AR(1) pada data ripple menjadi model dengan nilai akurasi tertinggi dibandingkan model lainnya dalam hal klasifikasi state.","PeriodicalId":31274,"journal":{"name":"Inferensi Jurnal Penelitian Sosial Keagamaan","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pemodelan Harga Cryptocurrency Menggunakan Markov Switching Autoregressive\",\"authors\":\"Akhmad Ridho Ashariansyah, Nur Iriawan, Adatul Mukarromah\",\"doi\":\"10.12962/j27213862.v3i2.7726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perdagangan merupakan sebuah kegiatan tukar menukar barang atau jasa yang dilakukan manusia untuk memenuhi kebutuhan hidup. Perkembangan sistem pembayaran yang dilakukan umat manusia dimulai dari sistem pertukaran barang atau barter, logam mulia seperti emas dan perak, koin, uang kartal, uang giral, dan uang elektronik (e-money). Selain itu, muncul cryptocurrency yaitu mata uang digital dengan sistem kriptografi dalam setiap proses transaksi datanya tanpa melalui pihak ketiga. Namun cryptocurrency memiliki kelemahan perubahan harga yang sangat besar dalam waktu yang sangat cepat. Pergerakan harga yang berfluktuasi sangat tinggi tersebut menyebabkan kekhawatiran pemilik aset kripto mengalami kerugian, maka pemodelan harga cryptocurrency sangat penting untuk dilakukan agar meminimalisir risiko kerugi-an. Berdasarkan pola pergerakan harga yang berfluktuasi sangat tinggi yang berbeda tiap periodenya maka dilakukanlah pemodelan harga cryptocurrency mengguna-kan Markov Switching Autoregressive (MSAR) dengan algoritma Expectation Maximization. Selain meminimkan risiko kerugian, penelitian ini juga ingin mengetahui model MSAR mana yang mampu mengklasifikasikan state dengan baik. Data yang digunakan yaitu harga harian cryptocurrency dengan nilai kapitalisasi pasar terbesar dari September 2015 hingga Januari 2020. Hasil penelitian menunjukkan bahwa bitcoin dan ripple menggunakan model MS(8)AR(1), sedangkan ethereum menggunakan model MS(9)AR(1). Selain itu model MS(8)AR(1) pada data ripple menjadi model dengan nilai akurasi tertinggi dibandingkan model lainnya dalam hal klasifikasi state.\",\"PeriodicalId\":31274,\"journal\":{\"name\":\"Inferensi Jurnal Penelitian Sosial Keagamaan\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inferensi Jurnal Penelitian Sosial Keagamaan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12962/j27213862.v3i2.7726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inferensi Jurnal Penelitian Sosial Keagamaan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/j27213862.v3i2.7726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

贸易是一种人类为满足生活需求而进行的交换活动。人类的支付系统的发展始于交换货物或交换系统,如金银、硬币、象牙、巨款和电子货币。此外,在没有第三方的情况下,在每个数据交易过程中都会出现一种数字加密货币。但是加密货币在非常快的时间内出现了巨大的价格变化。波动如此之大的价格流动导致了密码资产拥有者的担忧,因此加密货币的模式对于将损失降到最低的风险至关重要。根据每个周期波动异常高的价格位移模式,采用马尔可夫自动交换(MSAR)的方法,采用预期的马克西米扎西算法。除了将损失风险降到最低外,本研究还想知道哪一种MSAR模型能够正确分类。使用的数据是自2015年9月至2020年1月最大的市值加密货币。研究表明,比特币和ripple使用MS(8)AR(1)模型,而ethereum使用MS(9)AR(1)模型。除此之外,ripple数据中的MS(8)AR(1)在国家分类方面比其他模型更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pemodelan Harga Cryptocurrency Menggunakan Markov Switching Autoregressive
Perdagangan merupakan sebuah kegiatan tukar menukar barang atau jasa yang dilakukan manusia untuk memenuhi kebutuhan hidup. Perkembangan sistem pembayaran yang dilakukan umat manusia dimulai dari sistem pertukaran barang atau barter, logam mulia seperti emas dan perak, koin, uang kartal, uang giral, dan uang elektronik (e-money). Selain itu, muncul cryptocurrency yaitu mata uang digital dengan sistem kriptografi dalam setiap proses transaksi datanya tanpa melalui pihak ketiga. Namun cryptocurrency memiliki kelemahan perubahan harga yang sangat besar dalam waktu yang sangat cepat. Pergerakan harga yang berfluktuasi sangat tinggi tersebut menyebabkan kekhawatiran pemilik aset kripto mengalami kerugian, maka pemodelan harga cryptocurrency sangat penting untuk dilakukan agar meminimalisir risiko kerugi-an. Berdasarkan pola pergerakan harga yang berfluktuasi sangat tinggi yang berbeda tiap periodenya maka dilakukanlah pemodelan harga cryptocurrency mengguna-kan Markov Switching Autoregressive (MSAR) dengan algoritma Expectation Maximization. Selain meminimkan risiko kerugian, penelitian ini juga ingin mengetahui model MSAR mana yang mampu mengklasifikasikan state dengan baik. Data yang digunakan yaitu harga harian cryptocurrency dengan nilai kapitalisasi pasar terbesar dari September 2015 hingga Januari 2020. Hasil penelitian menunjukkan bahwa bitcoin dan ripple menggunakan model MS(8)AR(1), sedangkan ethereum menggunakan model MS(9)AR(1). Selain itu model MS(8)AR(1) pada data ripple menjadi model dengan nilai akurasi tertinggi dibandingkan model lainnya dalam hal klasifikasi state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信