全图是拉普拉斯积分

IF 0.4 4区 数学 Q4 MATHEMATICS
David Dolžan, Polona Oblak
{"title":"全图是拉普拉斯积分","authors":"David Dolžan, Polona Oblak","doi":"10.1142/s1005386722000323","DOIUrl":null,"url":null,"abstract":"We prove that the Laplacian matrix of the total graph of a finite commutative ring with identity has integer eigenvalues and present a recursive formula for computing its eigenvalues and eigenvectors. We also prove that the total graph of a finite commutative local ring with identity is super integral and give an example showing that this is not true for arbitrary rings.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"13 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total Graphs Are Laplacian Integral\",\"authors\":\"David Dolžan, Polona Oblak\",\"doi\":\"10.1142/s1005386722000323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the Laplacian matrix of the total graph of a finite commutative ring with identity has integer eigenvalues and present a recursive formula for computing its eigenvalues and eigenvectors. We also prove that the total graph of a finite commutative local ring with identity is super integral and give an example showing that this is not true for arbitrary rings.\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000323\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000323","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了具有恒等有限交换环的全图的拉普拉斯矩阵具有整数特征值,并给出了计算其特征值和特征向量的递推公式。证明了具有恒等的有限交换局部环的全图是超积分,并给出了一个例子,证明了这对任意环不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Total Graphs Are Laplacian Integral
We prove that the Laplacian matrix of the total graph of a finite commutative ring with identity has integer eigenvalues and present a recursive formula for computing its eigenvalues and eigenvectors. We also prove that the total graph of a finite commutative local ring with identity is super integral and give an example showing that this is not true for arbitrary rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信