具有非单调响应函数和周期扰动的捕食-食饵系统中的奇异吸引子

IF 1 Q3 Engineering
J. M. Tuwankotta, Eric Harjanto
{"title":"具有非单调响应函数和周期扰动的捕食-食饵系统中的奇异吸引子","authors":"J. M. Tuwankotta, Eric Harjanto","doi":"10.3934/jcd.2019024","DOIUrl":null,"url":null,"abstract":"A system of ordinary differential equations of a predator–prey type, depending on nine parameters, is studied. We have included in this model a nonmonotonic response function and time periodic perturbation. Using numerical continuation software, we have detected three codimension two bifurcations for the unperturbed system, namely cusp, Bogdanov-Takens and Bautin bifurcations. Furthermore, we concentrate on two regions in the parameter space, the region where the Bogdanov-Takens and the region where Bautin bifurcations occur. As we turn on the time perturbation, we find strange attractors in the neighborhood of invariant tori of the unperturbed system.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"52 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Strange attractors in a predator–prey system with non-monotonic response function and periodic perturbation\",\"authors\":\"J. M. Tuwankotta, Eric Harjanto\",\"doi\":\"10.3934/jcd.2019024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A system of ordinary differential equations of a predator–prey type, depending on nine parameters, is studied. We have included in this model a nonmonotonic response function and time periodic perturbation. Using numerical continuation software, we have detected three codimension two bifurcations for the unperturbed system, namely cusp, Bogdanov-Takens and Bautin bifurcations. Furthermore, we concentrate on two regions in the parameter space, the region where the Bogdanov-Takens and the region where Bautin bifurcations occur. As we turn on the time perturbation, we find strange attractors in the neighborhood of invariant tori of the unperturbed system.\",\"PeriodicalId\":37526,\"journal\":{\"name\":\"Journal of Computational Dynamics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jcd.2019024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2019024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

研究了一类具有9个参数的捕食者-猎物型常微分方程组。在该模型中加入了非单调响应函数和时间周期扰动。利用数值延拓软件,我们检测了非摄动系统的三个余维二分岔,即cusp分岔、Bogdanov-Takens分岔和Bautin分岔。此外,我们集中在参数空间中的两个区域,即Bogdanov-Takens区域和Bautin分岔发生的区域。当我们打开时间摄动时,我们在无摄动系统的不变环面邻域中发现了奇异吸引子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strange attractors in a predator–prey system with non-monotonic response function and periodic perturbation
A system of ordinary differential equations of a predator–prey type, depending on nine parameters, is studied. We have included in this model a nonmonotonic response function and time periodic perturbation. Using numerical continuation software, we have detected three codimension two bifurcations for the unperturbed system, namely cusp, Bogdanov-Takens and Bautin bifurcations. Furthermore, we concentrate on two regions in the parameter space, the region where the Bogdanov-Takens and the region where Bautin bifurcations occur. As we turn on the time perturbation, we find strange attractors in the neighborhood of invariant tori of the unperturbed system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Dynamics
Journal of Computational Dynamics Engineering-Computational Mechanics
CiteScore
2.30
自引率
10.00%
发文量
31
期刊介绍: JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信