微生物组和病态肥胖增加了致病刺激的多样性

4open Pub Date : 2019-01-01 DOI:10.1051/FOPEN/2018007
B. Brücher, I. Jamall
{"title":"微生物组和病态肥胖增加了致病刺激的多样性","authors":"B. Brücher, I. Jamall","doi":"10.1051/FOPEN/2018007","DOIUrl":null,"url":null,"abstract":"The microbiome, the relationship between environmental factors, a high-fat diet, morbid obesity, and host response have been associated with cancer, only a small fraction of which (<10%) are genetically triggered. This nongenetic association is underpinned by a worldwide increase in morbid obesity, which is associated with both insulin resistance and chronic inflammation. The connection of the microbiome and morbid obesity is reinforced by an approximate shift of about 47% in the estimated total number of bacteria and an increase from 38,000,000,000,000 in a reference man to 56,000,000,000,000 in morbid obesity leading to a disruption of the microbial ecology within the gut. Humans contain 6,000,000,000 microbes and more than 90% of the cells of the human body are microorganisms. Changes in the microflora of the gut are associated with the polarization of ion channels by butyrate, thereby influencing cell growth. The decrease in the relative proportion ofBacteroidetestogether with a change in the fermentation of carbohydrates by bacteria is observed in morbid obesity. The disruption of homeostasis of the microflora in the obese changes signaling and crosstalk of several pathways, resulting in inflammation while suppressing apoptosis. The interactions between the microbiome and morbid obesity are important to understand signaling and crosstalk in the context of the progression of the six-step sequence of carcinogenesis. This disruption of homeostasis increases remodeling of the extracellular matrix and fibrosis followed by the none-resolvable precancerous niche as the internal pathogenic stimuli continue. The chronic stress explains why under such circumstances there is a greater proclivity for normal cells to undergo the transition to cancer cells.","PeriodicalId":6841,"journal":{"name":"4open","volume":"18 8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Microbiome and morbid obesity increase pathogenic stimulus diversity\",\"authors\":\"B. Brücher, I. Jamall\",\"doi\":\"10.1051/FOPEN/2018007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microbiome, the relationship between environmental factors, a high-fat diet, morbid obesity, and host response have been associated with cancer, only a small fraction of which (<10%) are genetically triggered. This nongenetic association is underpinned by a worldwide increase in morbid obesity, which is associated with both insulin resistance and chronic inflammation. The connection of the microbiome and morbid obesity is reinforced by an approximate shift of about 47% in the estimated total number of bacteria and an increase from 38,000,000,000,000 in a reference man to 56,000,000,000,000 in morbid obesity leading to a disruption of the microbial ecology within the gut. Humans contain 6,000,000,000 microbes and more than 90% of the cells of the human body are microorganisms. Changes in the microflora of the gut are associated with the polarization of ion channels by butyrate, thereby influencing cell growth. The decrease in the relative proportion ofBacteroidetestogether with a change in the fermentation of carbohydrates by bacteria is observed in morbid obesity. The disruption of homeostasis of the microflora in the obese changes signaling and crosstalk of several pathways, resulting in inflammation while suppressing apoptosis. The interactions between the microbiome and morbid obesity are important to understand signaling and crosstalk in the context of the progression of the six-step sequence of carcinogenesis. This disruption of homeostasis increases remodeling of the extracellular matrix and fibrosis followed by the none-resolvable precancerous niche as the internal pathogenic stimuli continue. The chronic stress explains why under such circumstances there is a greater proclivity for normal cells to undergo the transition to cancer cells.\",\"PeriodicalId\":6841,\"journal\":{\"name\":\"4open\",\"volume\":\"18 8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/FOPEN/2018007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/FOPEN/2018007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

微生物组、环境因素、高脂肪饮食、病态肥胖和宿主反应之间的关系与癌症有关,其中只有一小部分(<10%)是由基因触发的。这种非遗传关联得到了世界范围内病态肥胖增加的支持,病态肥胖与胰岛素抵抗和慢性炎症有关。微生物群和病态肥胖之间的联系得到了加强,估计细菌总数大约发生了47%的变化,病态肥胖的细菌数量从参考人的38,000,000,000,000增加到56,000,000,000,000,导致肠道内微生物生态的破坏。人体含有60亿微生物,人体90%以上的细胞是微生物。肠道菌群的变化与丁酸盐离子通道的极化有关,从而影响细胞生长。在病态肥胖中观察到拟杆菌睾酮的相对比例下降以及细菌对碳水化合物发酵的变化。在肥胖中,微生物群的内稳态的破坏改变了几种途径的信号和串扰,在抑制细胞凋亡的同时导致炎症。微生物组与病态肥胖之间的相互作用对于理解致癌六步序列进展中的信号传导和串扰非常重要。随着内部致病刺激的继续,这种对内稳态的破坏增加了细胞外基质的重塑和纤维化,随后是不可解决的癌前生态位。这种慢性压力解释了为什么在这种情况下,正常细胞更倾向于转变为癌细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbiome and morbid obesity increase pathogenic stimulus diversity
The microbiome, the relationship between environmental factors, a high-fat diet, morbid obesity, and host response have been associated with cancer, only a small fraction of which (<10%) are genetically triggered. This nongenetic association is underpinned by a worldwide increase in morbid obesity, which is associated with both insulin resistance and chronic inflammation. The connection of the microbiome and morbid obesity is reinforced by an approximate shift of about 47% in the estimated total number of bacteria and an increase from 38,000,000,000,000 in a reference man to 56,000,000,000,000 in morbid obesity leading to a disruption of the microbial ecology within the gut. Humans contain 6,000,000,000 microbes and more than 90% of the cells of the human body are microorganisms. Changes in the microflora of the gut are associated with the polarization of ion channels by butyrate, thereby influencing cell growth. The decrease in the relative proportion ofBacteroidetestogether with a change in the fermentation of carbohydrates by bacteria is observed in morbid obesity. The disruption of homeostasis of the microflora in the obese changes signaling and crosstalk of several pathways, resulting in inflammation while suppressing apoptosis. The interactions between the microbiome and morbid obesity are important to understand signaling and crosstalk in the context of the progression of the six-step sequence of carcinogenesis. This disruption of homeostasis increases remodeling of the extracellular matrix and fibrosis followed by the none-resolvable precancerous niche as the internal pathogenic stimuli continue. The chronic stress explains why under such circumstances there is a greater proclivity for normal cells to undergo the transition to cancer cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信