通过有边缝合花同源的无取向绞结关系

IF 0.6 3区 数学 Q3 MATHEMATICS
D. Vela-Vick, C.-M. Michael Wong
{"title":"通过有边缝合花同源的无取向绞结关系","authors":"D. Vela-Vick, C.-M. Michael Wong","doi":"10.4310/jsg.2021.v19.n6.a4","DOIUrl":null,"url":null,"abstract":"We show that the bordered-sutured Floer invariant of the complement of a tangle in an arbitrary 3-manifold $Y$, with minimal conditions on the bordered-sutured structure, satisfies an unoriented skein exact triangle. This generalizes a theorem by Manolescu for links in $S^3$. We give a theoretical proof of this result by adapting holomorphic polygon counts to the bordered-sutured setting, and also give a combinatorial description of all maps involved and explicitly compute them. We then show that, for $Y = S^3$, our exact triangle coincides with Manolescu's. Finally, we provide a graded version of our result, explaining in detail the grading reduction process involved.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"113 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An unoriented skein relation via bordered–sutured Floer homology\",\"authors\":\"D. Vela-Vick, C.-M. Michael Wong\",\"doi\":\"10.4310/jsg.2021.v19.n6.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the bordered-sutured Floer invariant of the complement of a tangle in an arbitrary 3-manifold $Y$, with minimal conditions on the bordered-sutured structure, satisfies an unoriented skein exact triangle. This generalizes a theorem by Manolescu for links in $S^3$. We give a theoretical proof of this result by adapting holomorphic polygon counts to the bordered-sutured setting, and also give a combinatorial description of all maps involved and explicitly compute them. We then show that, for $Y = S^3$, our exact triangle coincides with Manolescu's. Finally, we provide a graded version of our result, explaining in detail the grading reduction process involved.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2021.v19.n6.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2021.v19.n6.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了任意3流形$Y$中缠结补的有边缝合Floer不变量,在有边缝合结构的最小条件下,满足无方向缠结精确三角形。这推广了Manolescu关于S^3$中连杆的定理。我们通过将全纯多边形计数适应于边界缝合设置,给出了这一结果的理论证明,并给出了所涉及的所有映射的组合描述和显式计算。然后我们证明,对于Y = S^3,我们的三角形与Manolescu的恰好重合。最后,我们提供了我们的结果的分级版本,详细解释了所涉及的分级减少过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An unoriented skein relation via bordered–sutured Floer homology
We show that the bordered-sutured Floer invariant of the complement of a tangle in an arbitrary 3-manifold $Y$, with minimal conditions on the bordered-sutured structure, satisfies an unoriented skein exact triangle. This generalizes a theorem by Manolescu for links in $S^3$. We give a theoretical proof of this result by adapting holomorphic polygon counts to the bordered-sutured setting, and also give a combinatorial description of all maps involved and explicitly compute them. We then show that, for $Y = S^3$, our exact triangle coincides with Manolescu's. Finally, we provide a graded version of our result, explaining in detail the grading reduction process involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信