有n嵌入子群的有限群

Qinghong Guo, Xuanli He, Muhong Huang
{"title":"有n嵌入子群的有限群","authors":"Qinghong Guo, Xuanli He, Muhong Huang","doi":"10.1142/S0218196721500508","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a finite group. How minimal subgroups can be embedded in [Formula: see text] is a question of particular interest in studying the structure of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-permutable in [Formula: see text] if [Formula: see text] for all Sylow subgroups [Formula: see text] of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-embedded in [Formula: see text] if there exists a normal subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the subgroup of [Formula: see text] generated by all those subgroups of [Formula: see text] which are [Formula: see text]-permutable in [Formula: see text]. In this paper, we investigate the structure of the finite group [Formula: see text] with [Formula: see text]-embedded subgroups.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"66 1","pages":"1419-1428"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite groups with n-embedded subgroups\",\"authors\":\"Qinghong Guo, Xuanli He, Muhong Huang\",\"doi\":\"10.1142/S0218196721500508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a finite group. How minimal subgroups can be embedded in [Formula: see text] is a question of particular interest in studying the structure of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-permutable in [Formula: see text] if [Formula: see text] for all Sylow subgroups [Formula: see text] of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-embedded in [Formula: see text] if there exists a normal subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the subgroup of [Formula: see text] generated by all those subgroups of [Formula: see text] which are [Formula: see text]-permutable in [Formula: see text]. In this paper, we investigate the structure of the finite group [Formula: see text] with [Formula: see text]-embedded subgroups.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"66 1\",\"pages\":\"1419-1428\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218196721500508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218196721500508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设[公式:见文本]是一个有限群。如何在[公式:见文本]中嵌入最小的子组是研究[公式:见文本]结构时特别感兴趣的问题。如果[Formula: see text]的所有Sylow子组[Formula: see text]的[Formula: see text]都存在[Formula: see text],则[Formula: see text]中的子组[Formula: see text]称为[Formula: see text]-在[Formula: see text]中是可变的。[公式:见文]的子群[公式:见文]被称为[公式:见文]-嵌入在[公式:见文]中,如果存在[公式:见文]的正常子群[公式:见文]使得[公式:见文]和[公式:见文],其中[公式:见文]是[公式:见文]的所有子群生成的[公式:见文]的子群[公式:见文]-在[公式:见文]中是可变的[公式:见文]。本文研究了嵌入子群的有限群[公式:见文]的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite groups with n-embedded subgroups
Let [Formula: see text] be a finite group. How minimal subgroups can be embedded in [Formula: see text] is a question of particular interest in studying the structure of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-permutable in [Formula: see text] if [Formula: see text] for all Sylow subgroups [Formula: see text] of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-embedded in [Formula: see text] if there exists a normal subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the subgroup of [Formula: see text] generated by all those subgroups of [Formula: see text] which are [Formula: see text]-permutable in [Formula: see text]. In this paper, we investigate the structure of the finite group [Formula: see text] with [Formula: see text]-embedded subgroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信