{"title":"有n嵌入子群的有限群","authors":"Qinghong Guo, Xuanli He, Muhong Huang","doi":"10.1142/S0218196721500508","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a finite group. How minimal subgroups can be embedded in [Formula: see text] is a question of particular interest in studying the structure of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-permutable in [Formula: see text] if [Formula: see text] for all Sylow subgroups [Formula: see text] of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-embedded in [Formula: see text] if there exists a normal subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the subgroup of [Formula: see text] generated by all those subgroups of [Formula: see text] which are [Formula: see text]-permutable in [Formula: see text]. In this paper, we investigate the structure of the finite group [Formula: see text] with [Formula: see text]-embedded subgroups.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"66 1","pages":"1419-1428"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite groups with n-embedded subgroups\",\"authors\":\"Qinghong Guo, Xuanli He, Muhong Huang\",\"doi\":\"10.1142/S0218196721500508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a finite group. How minimal subgroups can be embedded in [Formula: see text] is a question of particular interest in studying the structure of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-permutable in [Formula: see text] if [Formula: see text] for all Sylow subgroups [Formula: see text] of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-embedded in [Formula: see text] if there exists a normal subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the subgroup of [Formula: see text] generated by all those subgroups of [Formula: see text] which are [Formula: see text]-permutable in [Formula: see text]. In this paper, we investigate the structure of the finite group [Formula: see text] with [Formula: see text]-embedded subgroups.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"66 1\",\"pages\":\"1419-1428\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218196721500508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218196721500508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
设[公式:见文本]是一个有限群。如何在[公式:见文本]中嵌入最小的子组是研究[公式:见文本]结构时特别感兴趣的问题。如果[Formula: see text]的所有Sylow子组[Formula: see text]的[Formula: see text]都存在[Formula: see text],则[Formula: see text]中的子组[Formula: see text]称为[Formula: see text]-在[Formula: see text]中是可变的。[公式:见文]的子群[公式:见文]被称为[公式:见文]-嵌入在[公式:见文]中,如果存在[公式:见文]的正常子群[公式:见文]使得[公式:见文]和[公式:见文],其中[公式:见文]是[公式:见文]的所有子群生成的[公式:见文]的子群[公式:见文]-在[公式:见文]中是可变的[公式:见文]。本文研究了嵌入子群的有限群[公式:见文]的结构。
Let [Formula: see text] be a finite group. How minimal subgroups can be embedded in [Formula: see text] is a question of particular interest in studying the structure of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-permutable in [Formula: see text] if [Formula: see text] for all Sylow subgroups [Formula: see text] of [Formula: see text]. A subgroup [Formula: see text] of [Formula: see text] is called [Formula: see text]-embedded in [Formula: see text] if there exists a normal subgroup [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text], where [Formula: see text] is the subgroup of [Formula: see text] generated by all those subgroups of [Formula: see text] which are [Formula: see text]-permutable in [Formula: see text]. In this paper, we investigate the structure of the finite group [Formula: see text] with [Formula: see text]-embedded subgroups.