山区年平均雨量估算空间插值方法的比较分析

A. Laghari, H. Abbasi
{"title":"山区年平均雨量估算空间插值方法的比较分析","authors":"A. Laghari, H. Abbasi","doi":"10.26692/surj/2018.01.0017","DOIUrl":null,"url":null,"abstract":"The complex topography, poor gauge representativity and uneven density make it an uphill task to accurately map precipitation in mountainous regions. This challenge was confronted with the evaluation of four different mapping techniques: Inverse Distance Weighting (IDW), Ordinary Kriging (OK), Spline and Regression Kriging (RK). An evaluation of the resulting georasters using 1) cross-validation statistics, 2) a spatial cross-consistency test and 3) a water balance analysis reveals that the techniques ignoring the information on co-variables yield the largest prediction errors. Mean error and root-mean-square error values suggested that the most biased methods were IDW and spline, with a bias almost 2 to 5 times higher than ordinary kriging. The best model accounted for mean precipitation analysis is regression Kriging, with a mean error and root mean square error values of 1.38 mm and 72.36 mm respectively, which represents 42 % less bias and 16 % higher accuracy than OK results. Comparative performances show that the regression analysis made it possible to judiciously evaluate the variable patterns and get fairly accurate values at un-gauged locations where geographical information compensated the poor availability of local data.","PeriodicalId":21859,"journal":{"name":"Sindh University Research Journal","volume":"61 1","pages":"101-106"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Spatial Interpolation Techniques for Mapping Annual Mean Rainfall Estimation within a Mountainous Region\",\"authors\":\"A. Laghari, H. Abbasi\",\"doi\":\"10.26692/surj/2018.01.0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex topography, poor gauge representativity and uneven density make it an uphill task to accurately map precipitation in mountainous regions. This challenge was confronted with the evaluation of four different mapping techniques: Inverse Distance Weighting (IDW), Ordinary Kriging (OK), Spline and Regression Kriging (RK). An evaluation of the resulting georasters using 1) cross-validation statistics, 2) a spatial cross-consistency test and 3) a water balance analysis reveals that the techniques ignoring the information on co-variables yield the largest prediction errors. Mean error and root-mean-square error values suggested that the most biased methods were IDW and spline, with a bias almost 2 to 5 times higher than ordinary kriging. The best model accounted for mean precipitation analysis is regression Kriging, with a mean error and root mean square error values of 1.38 mm and 72.36 mm respectively, which represents 42 % less bias and 16 % higher accuracy than OK results. Comparative performances show that the regression analysis made it possible to judiciously evaluate the variable patterns and get fairly accurate values at un-gauged locations where geographical information compensated the poor availability of local data.\",\"PeriodicalId\":21859,\"journal\":{\"name\":\"Sindh University Research Journal\",\"volume\":\"61 1\",\"pages\":\"101-106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sindh University Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26692/surj/2018.01.0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sindh University Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26692/surj/2018.01.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

山区地形复杂,测量代表性差,密度不均匀,使得准确绘制山区降水地图任务艰巨。面对这一挑战,我们对四种不同的映射技术进行了评估:逆距离加权(IDW)、普通克里格(OK)、样条和回归克里格(RK)。使用1)交叉验证统计、2)空间交叉一致性检验和3)水平衡分析对结果进行的评估表明,忽略协变量信息的技术产生的预测误差最大。平均误差和均方根误差值表明,IDW和样条法偏差最大,其偏差几乎是普通克里格法的2 ~ 5倍。平均降水分析的最佳模型是回归克里格模型,其平均误差和均方根误差分别为1.38 mm和72.36 mm,比OK模型的结果偏差减少42%,精度提高16%。比较表现表明,回归分析可以明智地评估变量模式,并在地理信息弥补当地数据不足的未计量地点获得相当准确的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Spatial Interpolation Techniques for Mapping Annual Mean Rainfall Estimation within a Mountainous Region
The complex topography, poor gauge representativity and uneven density make it an uphill task to accurately map precipitation in mountainous regions. This challenge was confronted with the evaluation of four different mapping techniques: Inverse Distance Weighting (IDW), Ordinary Kriging (OK), Spline and Regression Kriging (RK). An evaluation of the resulting georasters using 1) cross-validation statistics, 2) a spatial cross-consistency test and 3) a water balance analysis reveals that the techniques ignoring the information on co-variables yield the largest prediction errors. Mean error and root-mean-square error values suggested that the most biased methods were IDW and spline, with a bias almost 2 to 5 times higher than ordinary kriging. The best model accounted for mean precipitation analysis is regression Kriging, with a mean error and root mean square error values of 1.38 mm and 72.36 mm respectively, which represents 42 % less bias and 16 % higher accuracy than OK results. Comparative performances show that the regression analysis made it possible to judiciously evaluate the variable patterns and get fairly accurate values at un-gauged locations where geographical information compensated the poor availability of local data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信