混合Robin边界条件下常变系数平流扩散方程的高效谱Legendre Galerkin方法

Zineb Laouar, N. Arar, Abdel-Fattah Talaat
{"title":"混合Robin边界条件下常变系数平流扩散方程的高效谱Legendre Galerkin方法","authors":"Zineb Laouar, N. Arar, Abdel-Fattah Talaat","doi":"10.31197/atnaa.1139533","DOIUrl":null,"url":null,"abstract":"This paper aims to develop a numerical approximation for the solution of the advection-diffusion equation with constant and variable coefficients. We propose a numerical solution for the equation associated with Robin's mixed boundary conditions perturbed with a small parameter $\\varepsilon$. The approximation is based on a couple of methods: A spectral method of Galerkin type with a basis composed from Legendre-polynomials and a Gauss quadrature of type Gauss-Lobatto applied for integral calculations with a stability and convergence analysis. In addition, a Crank-Nicolson scheme is used for temporal solution as a finite difference method. Several numerical examples are discussed to show the efficiency of the proposed numerical method, specially when $\\varepsilon$ tends to zero so that we obtain the exact solution of the classic problem with homogeneous Dirichlet boundary conditions. The numerical convergence is well presented in different examples. Therefore, we build an efficient numerical method for different types of partial differential equations with different boundary conditions.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient spectral Legendre Galerkin approach for the advection diffusion equation with constant and variable coefficients under mixed Robin boundary conditions\",\"authors\":\"Zineb Laouar, N. Arar, Abdel-Fattah Talaat\",\"doi\":\"10.31197/atnaa.1139533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to develop a numerical approximation for the solution of the advection-diffusion equation with constant and variable coefficients. We propose a numerical solution for the equation associated with Robin's mixed boundary conditions perturbed with a small parameter $\\\\varepsilon$. The approximation is based on a couple of methods: A spectral method of Galerkin type with a basis composed from Legendre-polynomials and a Gauss quadrature of type Gauss-Lobatto applied for integral calculations with a stability and convergence analysis. In addition, a Crank-Nicolson scheme is used for temporal solution as a finite difference method. Several numerical examples are discussed to show the efficiency of the proposed numerical method, specially when $\\\\varepsilon$ tends to zero so that we obtain the exact solution of the classic problem with homogeneous Dirichlet boundary conditions. The numerical convergence is well presented in different examples. Therefore, we build an efficient numerical method for different types of partial differential equations with different boundary conditions.\",\"PeriodicalId\":7440,\"journal\":{\"name\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31197/atnaa.1139533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1139533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在建立常系数和变系数平流扩散方程解的数值近似。本文给出了带有小参数扰动的Robin混合边界条件方程的数值解。该近似基于两种方法:一种是由legende多项式组成基的Galerkin型谱法,另一种是用于积分计算的Gauss- lobatto型正交法,并进行了稳定性和收敛性分析。此外,用Crank-Nicolson格式作为有限差分法进行时间解。通过几个数值算例说明了所提数值方法的有效性,特别是当$\varepsilon$趋于零时,从而得到了具有齐次Dirichlet边界条件的经典问题的精确解。在不同的算例中很好地说明了数值收敛性。因此,我们建立了一种求解不同边界条件下不同类型偏微分方程的有效数值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient spectral Legendre Galerkin approach for the advection diffusion equation with constant and variable coefficients under mixed Robin boundary conditions
This paper aims to develop a numerical approximation for the solution of the advection-diffusion equation with constant and variable coefficients. We propose a numerical solution for the equation associated with Robin's mixed boundary conditions perturbed with a small parameter $\varepsilon$. The approximation is based on a couple of methods: A spectral method of Galerkin type with a basis composed from Legendre-polynomials and a Gauss quadrature of type Gauss-Lobatto applied for integral calculations with a stability and convergence analysis. In addition, a Crank-Nicolson scheme is used for temporal solution as a finite difference method. Several numerical examples are discussed to show the efficiency of the proposed numerical method, specially when $\varepsilon$ tends to zero so that we obtain the exact solution of the classic problem with homogeneous Dirichlet boundary conditions. The numerical convergence is well presented in different examples. Therefore, we build an efficient numerical method for different types of partial differential equations with different boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信