{"title":"利用地方工业废料制备可持续砖的热性能试验研究","authors":"A. Saleh, M. Rahmat, Rafizah Mohamed Nordin","doi":"10.30880/jsmpm.2021.01.01.006","DOIUrl":null,"url":null,"abstract":"Rapid development around the globe, increase of population and construction with the latest and megastructures have escalated the demand for energy. The increasing of ambient outdoor temperature requires mechanical air conditioners to maintain a comfortable environment within the building, this contributes to high energy consumption. Building with good thermal conductivity properties passively reduces energy consumption. This experimental work focuses on four (4) brick systems which are Laterite Clay (LC), Solid Waste Fly Ash (SWFA) Bricks, Laterite SWFA (LS) Brick, and Laterite SWFA Paint Sludge (LSP) Bricks. Ordinary Portland Cement (OPC), Hydrate Lime (HL), and Ground Granulated Blast Furnace Slag (GGBS) were used as stabiliser. Higher thermal conductivity was recorded for all bricks systems that stabilised with HL. Thermal conductivity was significantly reduced when GGBS was incorporated as a blended stabiliser. SWFA bricks system recorded the lowest thermal conductivity of all bricks systems investigated. A lower thermal conductivity value indicates better thermal properties. In all brick-wall systems, the thermal conductivity was found to increase linearly with density.","PeriodicalId":17134,"journal":{"name":"Journal of Sustainable Materials Processing and Management","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Study on Thermal Properties of Sustainable Bricks Made from Local Industrial Waste\",\"authors\":\"A. Saleh, M. Rahmat, Rafizah Mohamed Nordin\",\"doi\":\"10.30880/jsmpm.2021.01.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid development around the globe, increase of population and construction with the latest and megastructures have escalated the demand for energy. The increasing of ambient outdoor temperature requires mechanical air conditioners to maintain a comfortable environment within the building, this contributes to high energy consumption. Building with good thermal conductivity properties passively reduces energy consumption. This experimental work focuses on four (4) brick systems which are Laterite Clay (LC), Solid Waste Fly Ash (SWFA) Bricks, Laterite SWFA (LS) Brick, and Laterite SWFA Paint Sludge (LSP) Bricks. Ordinary Portland Cement (OPC), Hydrate Lime (HL), and Ground Granulated Blast Furnace Slag (GGBS) were used as stabiliser. Higher thermal conductivity was recorded for all bricks systems that stabilised with HL. Thermal conductivity was significantly reduced when GGBS was incorporated as a blended stabiliser. SWFA bricks system recorded the lowest thermal conductivity of all bricks systems investigated. A lower thermal conductivity value indicates better thermal properties. In all brick-wall systems, the thermal conductivity was found to increase linearly with density.\",\"PeriodicalId\":17134,\"journal\":{\"name\":\"Journal of Sustainable Materials Processing and Management\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Materials Processing and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/jsmpm.2021.01.01.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Materials Processing and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/jsmpm.2021.01.01.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Experimental Study on Thermal Properties of Sustainable Bricks Made from Local Industrial Waste
Rapid development around the globe, increase of population and construction with the latest and megastructures have escalated the demand for energy. The increasing of ambient outdoor temperature requires mechanical air conditioners to maintain a comfortable environment within the building, this contributes to high energy consumption. Building with good thermal conductivity properties passively reduces energy consumption. This experimental work focuses on four (4) brick systems which are Laterite Clay (LC), Solid Waste Fly Ash (SWFA) Bricks, Laterite SWFA (LS) Brick, and Laterite SWFA Paint Sludge (LSP) Bricks. Ordinary Portland Cement (OPC), Hydrate Lime (HL), and Ground Granulated Blast Furnace Slag (GGBS) were used as stabiliser. Higher thermal conductivity was recorded for all bricks systems that stabilised with HL. Thermal conductivity was significantly reduced when GGBS was incorporated as a blended stabiliser. SWFA bricks system recorded the lowest thermal conductivity of all bricks systems investigated. A lower thermal conductivity value indicates better thermal properties. In all brick-wall systems, the thermal conductivity was found to increase linearly with density.