{"title":"继电熔合帧和F的一些推广","authors":"Xiujiao Chi, G. Hong, Pengtong Li","doi":"10.1155/2023/5920210","DOIUrl":null,"url":null,"abstract":"<jats:p>The relay fusion frame proposed by Hong and Li is an extension of a fusion frame that has many applications in science. In this study, we introduce relay fusion frames in Hilbert <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>-modules very naturally and shift some common attributes of fusion frames and relay fusion frames in Hilbert spaces to relay fusion frames in Hilbert <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>-modules. In addition, we generalize some perturbation results in frame theory to relay fusion frames in Hilbert <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>-modules. Finally, we introduce a class of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>F</mi>\n <mo>,</mo>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-relay fusion frames as a generalization of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>K</mi>\n </math>\n </jats:inline-formula>-frames and present some perturbation results for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>F</mi>\n <mo>,</mo>\n <mi>G</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-relay fusion frames in Hilbert <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mi>∗</mi>\n </msup>\n </math>\n </jats:inline-formula>-modules.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"109 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Generalizations of Relay Fusion Frames and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>F</mi>\\n <mo>,</mo>\\n \",\"authors\":\"Xiujiao Chi, G. Hong, Pengtong Li\",\"doi\":\"10.1155/2023/5920210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>The relay fusion frame proposed by Hong and Li is an extension of a fusion frame that has many applications in science. In this study, we introduce relay fusion frames in Hilbert <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <msup>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mi>∗</mi>\\n </msup>\\n </math>\\n </jats:inline-formula>-modules very naturally and shift some common attributes of fusion frames and relay fusion frames in Hilbert spaces to relay fusion frames in Hilbert <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <msup>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mi>∗</mi>\\n </msup>\\n </math>\\n </jats:inline-formula>-modules. In addition, we generalize some perturbation results in frame theory to relay fusion frames in Hilbert <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <msup>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mi>∗</mi>\\n </msup>\\n </math>\\n </jats:inline-formula>-modules. Finally, we introduce a class of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>F</mi>\\n <mo>,</mo>\\n <mi>G</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>-relay fusion frames as a generalization of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>K</mi>\\n </math>\\n </jats:inline-formula>-frames and present some perturbation results for <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>F</mi>\\n <mo>,</mo>\\n <mi>G</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>-relay fusion frames in Hilbert <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <msup>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <mi>∗</mi>\\n </msup>\\n </math>\\n </jats:inline-formula>-modules.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5920210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5920210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Hong和Li提出的中继融合框架是对融合框架的扩展,在科学上有许多应用。在这项研究中,我们很自然地在Hilbert C *模中引入了继电融合框架,并将Hilbert空间中的融合框架和继电融合框架的一些共同属性转移到Hilbert空间中的继电融合框架C * -模。此外,我们将框架理论中的一些微扰结果推广到Hilbert C * -模中的中继融合框架。最后,我们引入一类F,G -中继融合帧作为K -帧的推广,并给出了F的一些摄动结果。Hilbert C *模中的G -继电器熔合帧。
The relay fusion frame proposed by Hong and Li is an extension of a fusion frame that has many applications in science. In this study, we introduce relay fusion frames in Hilbert -modules very naturally and shift some common attributes of fusion frames and relay fusion frames in Hilbert spaces to relay fusion frames in Hilbert -modules. In addition, we generalize some perturbation results in frame theory to relay fusion frames in Hilbert -modules. Finally, we introduce a class of -relay fusion frames as a generalization of -frames and present some perturbation results for -relay fusion frames in Hilbert -modules.