边缘计算设备实时计算机视觉应用的性能评估与改进

Julian Gutierrez, Nicolas Bohm Agostini, D. Kaeli
{"title":"边缘计算设备实时计算机视觉应用的性能评估与改进","authors":"Julian Gutierrez, Nicolas Bohm Agostini, D. Kaeli","doi":"10.1145/3447545.3451202","DOIUrl":null,"url":null,"abstract":"Advances in deep neural networks have provided a significant improvement in accuracy and speed across a large range of Computer Vision (CV) applications. However, our ability to perform real-time CV on edge devices is severely restricted by their limited computing capabilities. In this paper we employ Vega, a parallel graph-based framework, to study the performance limitations of four heterogeneous edge-computing platforms, while running 12 popular deep learning CV applications. We expand the framework's capabilities, introducing two new performance enhancements: 1) an adaptive stage instance controller (ASI-C) that can improve performance by dynamically selecting the number of instances for a given stage of the pipeline; and 2) an adaptive input resolution controller (AIR-C) to improve responsiveness and enable real-time performance. These two solutions are integrated together to provide a robust real-time solution. Our experimental results show that ASI-C improves run-time performance by 1.4x on average across all heterogeneous platforms, achieving a maximum speedup of 4.3x while running face detection executed on a high-end edge device. We demonstrate that our integrated optimization framework improves performance of applications and is robust to changing execution patterns.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation and Improvement of Real-Time Computer Vision Applications for Edge Computing Devices\",\"authors\":\"Julian Gutierrez, Nicolas Bohm Agostini, D. Kaeli\",\"doi\":\"10.1145/3447545.3451202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in deep neural networks have provided a significant improvement in accuracy and speed across a large range of Computer Vision (CV) applications. However, our ability to perform real-time CV on edge devices is severely restricted by their limited computing capabilities. In this paper we employ Vega, a parallel graph-based framework, to study the performance limitations of four heterogeneous edge-computing platforms, while running 12 popular deep learning CV applications. We expand the framework's capabilities, introducing two new performance enhancements: 1) an adaptive stage instance controller (ASI-C) that can improve performance by dynamically selecting the number of instances for a given stage of the pipeline; and 2) an adaptive input resolution controller (AIR-C) to improve responsiveness and enable real-time performance. These two solutions are integrated together to provide a robust real-time solution. Our experimental results show that ASI-C improves run-time performance by 1.4x on average across all heterogeneous platforms, achieving a maximum speedup of 4.3x while running face detection executed on a high-end edge device. We demonstrate that our integrated optimization framework improves performance of applications and is robust to changing execution patterns.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447545.3451202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447545.3451202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络的进步在很大范围的计算机视觉(CV)应用中提供了精度和速度的显著提高。然而,我们在边缘设备上执行实时CV的能力受到其有限的计算能力的严重限制。在本文中,我们使用并行图框架Vega,在运行12个流行的深度学习CV应用程序的同时,研究了四种异构边缘计算平台的性能限制。我们扩展了框架的功能,引入了两个新的性能增强:1)一个自适应阶段实例控制器(ASI-C),它可以通过动态选择管道给定阶段的实例数量来提高性能;2)自适应输入分辨率控制器(AIR-C),以提高响应能力和实现实时性能。这两种解决方案集成在一起,提供了一个健壮的实时解决方案。我们的实验结果表明,在所有异构平台上,ASI-C平均提高了1.4倍的运行时性能,在高端边缘设备上运行人脸检测时,实现了4.3倍的最大加速。我们演示了我们的集成优化框架提高了应用程序的性能,并且对于更改执行模式具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation and Improvement of Real-Time Computer Vision Applications for Edge Computing Devices
Advances in deep neural networks have provided a significant improvement in accuracy and speed across a large range of Computer Vision (CV) applications. However, our ability to perform real-time CV on edge devices is severely restricted by their limited computing capabilities. In this paper we employ Vega, a parallel graph-based framework, to study the performance limitations of four heterogeneous edge-computing platforms, while running 12 popular deep learning CV applications. We expand the framework's capabilities, introducing two new performance enhancements: 1) an adaptive stage instance controller (ASI-C) that can improve performance by dynamically selecting the number of instances for a given stage of the pipeline; and 2) an adaptive input resolution controller (AIR-C) to improve responsiveness and enable real-time performance. These two solutions are integrated together to provide a robust real-time solution. Our experimental results show that ASI-C improves run-time performance by 1.4x on average across all heterogeneous platforms, achieving a maximum speedup of 4.3x while running face detection executed on a high-end edge device. We demonstrate that our integrated optimization framework improves performance of applications and is robust to changing execution patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信