一氧化氮参与调节杏鲍菇细胞色素P450基因家族和线粒体相关基因在镉胁迫下的表达模式初步分析

IF 3.6 4区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Changsong Zhao, Huilan Su, Lin Zhou, J. Liu, T. Lan, Lanchai Chen, Zhaoqiong Chen, Qiang Li
{"title":"一氧化氮参与调节杏鲍菇细胞色素P450基因家族和线粒体相关基因在镉胁迫下的表达模式初步分析","authors":"Changsong Zhao, Huilan Su, Lin Zhou, J. Liu, T. Lan, Lanchai Chen, Zhaoqiong Chen, Qiang Li","doi":"10.1080/26395940.2023.2229023","DOIUrl":null,"url":null,"abstract":"ABSTRACT   Nitric oxide (NO) plays an important role in fungal response to abiotic stress, but little is known about whether or not NO is involved in regulating cytochrome P450 (CYP) gene family and mitochondrial related genes (MRG) of Pleurotus eryngii in response to cadmium (Cd) stress. In this study, 125 CYP members and 127 differentially expressed MRG were identified. The analysis of gene length and exon number revealed the complexity of CYP gene family. After adding exogenous NO, the expression patterns showed that PleCYP2 and 4-hydroxybenzoate polyprenyltransferase were significantly up-regulated, the functions of membrane and membrane components were enhanced, and the mitochondrial splicing apparatus component gene was activated, which might be the potential mechanism of NO regulating P. eryngii resistance to Cd stress. This study lays a foundation for further revealing the mechanism of NO in regulating P. eryngii response to abiotic stress and promotes the potential application in fungal cultivation.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nitric oxide is involved in regulating cytochrome P450 gene family and mitochondrial related genes of Pleurotus eryngii in response to cadmium stress: preliminary expression patterns analysis\",\"authors\":\"Changsong Zhao, Huilan Su, Lin Zhou, J. Liu, T. Lan, Lanchai Chen, Zhaoqiong Chen, Qiang Li\",\"doi\":\"10.1080/26395940.2023.2229023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT   Nitric oxide (NO) plays an important role in fungal response to abiotic stress, but little is known about whether or not NO is involved in regulating cytochrome P450 (CYP) gene family and mitochondrial related genes (MRG) of Pleurotus eryngii in response to cadmium (Cd) stress. In this study, 125 CYP members and 127 differentially expressed MRG were identified. The analysis of gene length and exon number revealed the complexity of CYP gene family. After adding exogenous NO, the expression patterns showed that PleCYP2 and 4-hydroxybenzoate polyprenyltransferase were significantly up-regulated, the functions of membrane and membrane components were enhanced, and the mitochondrial splicing apparatus component gene was activated, which might be the potential mechanism of NO regulating P. eryngii resistance to Cd stress. This study lays a foundation for further revealing the mechanism of NO in regulating P. eryngii response to abiotic stress and promotes the potential application in fungal cultivation.\",\"PeriodicalId\":11785,\"journal\":{\"name\":\"Environmental Pollutants and Bioavailability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollutants and Bioavailability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/26395940.2023.2229023\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollutants and Bioavailability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/26395940.2023.2229023","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitric oxide is involved in regulating cytochrome P450 gene family and mitochondrial related genes of Pleurotus eryngii in response to cadmium stress: preliminary expression patterns analysis
ABSTRACT   Nitric oxide (NO) plays an important role in fungal response to abiotic stress, but little is known about whether or not NO is involved in regulating cytochrome P450 (CYP) gene family and mitochondrial related genes (MRG) of Pleurotus eryngii in response to cadmium (Cd) stress. In this study, 125 CYP members and 127 differentially expressed MRG were identified. The analysis of gene length and exon number revealed the complexity of CYP gene family. After adding exogenous NO, the expression patterns showed that PleCYP2 and 4-hydroxybenzoate polyprenyltransferase were significantly up-regulated, the functions of membrane and membrane components were enhanced, and the mitochondrial splicing apparatus component gene was activated, which might be the potential mechanism of NO regulating P. eryngii resistance to Cd stress. This study lays a foundation for further revealing the mechanism of NO in regulating P. eryngii response to abiotic stress and promotes the potential application in fungal cultivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Pollutants and Bioavailability
Environmental Pollutants and Bioavailability Chemical Engineering-Chemical Health and Safety
CiteScore
4.30
自引率
3.00%
发文量
47
审稿时长
13 weeks
期刊介绍: Environmental Pollutants & Bioavailability is a peer-reviewed open access forum for insights on the chemical aspects of pollutants in the environment and biota, and their impacts on the uptake of the substances by living organisms. Topics include the occurrence, distribution, transport, transformation, transfer, fate, and effects of environmental pollutants, as well as their impact on living organisms. Substances of interests include heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信