旋转光滑球体和棒球背后的尾流模式

P. Mortimer, J. Vaccaro, D. M. Rooney
{"title":"旋转光滑球体和棒球背后的尾流模式","authors":"P. Mortimer, J. Vaccaro, D. M. Rooney","doi":"10.1115/FEDSM2018-83357","DOIUrl":null,"url":null,"abstract":"An experimental investigation into the flow field behind baseballs at two different seam orientations as well as a smooth sphere of the same diameter was undertaken at Reynolds numbers of 5 × 104 and 1 × 105. The rotational speed of the three spheres varied from 0 to 2400 rpm, with data collected in increments of 400 rpm which correspond to relative spin rates between 0 and 0.94. Mean velocity profiles, turbulence in intensity profiles, and power spectral density of the signals were taken using hot-wire anemometry. The smooth sphere wake was seen to change in orientation over a range of relative rotational speeds. The Strouhal number remained constant around 0.24 for relatively low spin rates. The seams on the baseball suppressed any measurable vortex shedding once rotation began, also eliminating any significant change in wake orientation as evidenced by the mean velocity deficit and turbulence intensity profiles. It was concluded that the so-called inverse Magnus effect recorded by previous investigators at a specific Reynolds number / relative rotational speed of a sphere exists only for a smooth sphere and not for a sphere where the boundary layer separation is governed by raised seams.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wake Flow Patterns Behind Rotating Smooth Spheres and Baseballs\",\"authors\":\"P. Mortimer, J. Vaccaro, D. M. Rooney\",\"doi\":\"10.1115/FEDSM2018-83357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experimental investigation into the flow field behind baseballs at two different seam orientations as well as a smooth sphere of the same diameter was undertaken at Reynolds numbers of 5 × 104 and 1 × 105. The rotational speed of the three spheres varied from 0 to 2400 rpm, with data collected in increments of 400 rpm which correspond to relative spin rates between 0 and 0.94. Mean velocity profiles, turbulence in intensity profiles, and power spectral density of the signals were taken using hot-wire anemometry. The smooth sphere wake was seen to change in orientation over a range of relative rotational speeds. The Strouhal number remained constant around 0.24 for relatively low spin rates. The seams on the baseball suppressed any measurable vortex shedding once rotation began, also eliminating any significant change in wake orientation as evidenced by the mean velocity deficit and turbulence intensity profiles. It was concluded that the so-called inverse Magnus effect recorded by previous investigators at a specific Reynolds number / relative rotational speed of a sphere exists only for a smooth sphere and not for a sphere where the boundary layer separation is governed by raised seams.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在雷诺数为5 × 104和1 × 105的条件下,对两种不同缝向下的棒球和直径相同的光滑球的流场进行了实验研究。三个球体的转速从0到2400转/分不等,数据以400转/分的增量收集,对应于0到0.94之间的相对旋转速率。用热线风速法测量了信号的平均速度分布、湍流强度分布和功率谱密度。光滑的球形尾迹在相对转速范围内的方向变化。在相对较低的自旋速率下,斯特罗哈尔数保持恒定在0.24左右。一旦旋转开始,棒球上的接缝抑制了任何可测量的涡流脱落,也消除了尾流方向的任何显著变化,这一点可以从平均速度赤字和湍流强度剖面中得到证明。在一定雷诺数/相对旋转速度下,前人记录的所谓逆马格努斯效应只存在于光滑球中,而不存在于由凸起接缝控制边界层分离的球中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wake Flow Patterns Behind Rotating Smooth Spheres and Baseballs
An experimental investigation into the flow field behind baseballs at two different seam orientations as well as a smooth sphere of the same diameter was undertaken at Reynolds numbers of 5 × 104 and 1 × 105. The rotational speed of the three spheres varied from 0 to 2400 rpm, with data collected in increments of 400 rpm which correspond to relative spin rates between 0 and 0.94. Mean velocity profiles, turbulence in intensity profiles, and power spectral density of the signals were taken using hot-wire anemometry. The smooth sphere wake was seen to change in orientation over a range of relative rotational speeds. The Strouhal number remained constant around 0.24 for relatively low spin rates. The seams on the baseball suppressed any measurable vortex shedding once rotation began, also eliminating any significant change in wake orientation as evidenced by the mean velocity deficit and turbulence intensity profiles. It was concluded that the so-called inverse Magnus effect recorded by previous investigators at a specific Reynolds number / relative rotational speed of a sphere exists only for a smooth sphere and not for a sphere where the boundary layer separation is governed by raised seams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信