电子光学中亚伯拉罕-闵可夫斯基之争的类比

K. K. Grigoryan
{"title":"电子光学中亚伯拉罕-闵可夫斯基之争的类比","authors":"K. K. Grigoryan","doi":"10.46991/pysu:a/2021.55.3.169","DOIUrl":null,"url":null,"abstract":"In the problem of electron diffraction by a standing light wave (the Kapitza–Dirac effect), an electronic refractive index can be defined as the ratio of electron momenta in the wave field and outside it. Moreover, both kinetic and canonical electron momenta can be used for this purpose, which corresponds to the Abraham–Minkowski controversy in photonic optics. It is shown that in both cases the same expression for the electronic refractive index is obtained. This is consistent with Barnett's resolution of the Abraham–Minkowski dilemma.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALOGUE OF THE ABRAHAM–MINKOWSKI CONTROVERSY IN ELECTRONIC OPTICS\",\"authors\":\"K. K. Grigoryan\",\"doi\":\"10.46991/pysu:a/2021.55.3.169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the problem of electron diffraction by a standing light wave (the Kapitza–Dirac effect), an electronic refractive index can be defined as the ratio of electron momenta in the wave field and outside it. Moreover, both kinetic and canonical electron momenta can be used for this purpose, which corresponds to the Abraham–Minkowski controversy in photonic optics. It is shown that in both cases the same expression for the electronic refractive index is obtained. This is consistent with Barnett's resolution of the Abraham–Minkowski dilemma.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2021.55.3.169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2021.55.3.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在驻波电子衍射问题(卡皮察-狄拉克效应)中,电子折射率可以定义为波场内外电子动量之比。此外,动能和正则电子动量都可以用于此目的,这与光子光学中的亚伯拉罕-闵可夫斯基争议相对应。结果表明,在这两种情况下,得到了相同的电子折射率表达式。这与巴奈特对亚伯拉罕-闵可夫斯基困境的解决是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALOGUE OF THE ABRAHAM–MINKOWSKI CONTROVERSY IN ELECTRONIC OPTICS
In the problem of electron diffraction by a standing light wave (the Kapitza–Dirac effect), an electronic refractive index can be defined as the ratio of electron momenta in the wave field and outside it. Moreover, both kinetic and canonical electron momenta can be used for this purpose, which corresponds to the Abraham–Minkowski controversy in photonic optics. It is shown that in both cases the same expression for the electronic refractive index is obtained. This is consistent with Barnett's resolution of the Abraham–Minkowski dilemma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信