巨噬细胞轨迹的进化曲线平滑

Q4 Mathematics
G. Lupi, K. Mikula, Seol Ah Park
{"title":"巨噬细胞轨迹的进化曲线平滑","authors":"G. Lupi, K. Mikula, Seol Ah Park","doi":"10.48550/arXiv.2211.15184","DOIUrl":null,"url":null,"abstract":"Abstract When analyzing cell trajectories, we often have to deal with noisy data due to the random motion of the cells and possible imperfections in cell center detection. To smooth these trajectories, we present a mathematical model and numerical method based on evolving open-plane curve approach in the Lagrangian formulation. The model contains two terms: the first is the smoothing term given by the influence of local curvature, while the other attracts the curve to the original trajectory. We use the flowing finite volume method to discretize the advection-diffusion partial differential equation. The PDE includes the asymptotically uniform tangential redistribution of curve grid points. We present results for macrophage trajectory smoothing and define a method to compute the cell velocity for the discrete points on the smoothed curve.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Macrophages Trajectories Smoothing by Evolving Curves\",\"authors\":\"G. Lupi, K. Mikula, Seol Ah Park\",\"doi\":\"10.48550/arXiv.2211.15184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract When analyzing cell trajectories, we often have to deal with noisy data due to the random motion of the cells and possible imperfections in cell center detection. To smooth these trajectories, we present a mathematical model and numerical method based on evolving open-plane curve approach in the Lagrangian formulation. The model contains two terms: the first is the smoothing term given by the influence of local curvature, while the other attracts the curve to the original trajectory. We use the flowing finite volume method to discretize the advection-diffusion partial differential equation. The PDE includes the asymptotically uniform tangential redistribution of curve grid points. We present results for macrophage trajectory smoothing and define a method to compute the cell velocity for the discrete points on the smoothed curve.\",\"PeriodicalId\":38690,\"journal\":{\"name\":\"Tatra Mountains Mathematical Publications\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tatra Mountains Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.15184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.15184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

在分析细胞轨迹时,由于细胞的随机运动和细胞中心检测可能存在的缺陷,我们经常需要处理有噪声的数据。为了使这些轨迹平滑,我们提出了一种基于拉格朗日公式中不断发展的开平面曲线方法的数学模型和数值方法。该模型包含两项:一项是局部曲率影响下的平滑项,另一项是将曲线吸引到原始轨迹上。采用流动有限体积法对平流扩散偏微分方程进行离散化。PDE包括曲线网格点的渐近均匀切向重分布。我们提出了巨噬细胞轨迹平滑的结果,并定义了一种计算平滑曲线上离散点的细胞速度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macrophages Trajectories Smoothing by Evolving Curves
Abstract When analyzing cell trajectories, we often have to deal with noisy data due to the random motion of the cells and possible imperfections in cell center detection. To smooth these trajectories, we present a mathematical model and numerical method based on evolving open-plane curve approach in the Lagrangian formulation. The model contains two terms: the first is the smoothing term given by the influence of local curvature, while the other attracts the curve to the original trajectory. We use the flowing finite volume method to discretize the advection-diffusion partial differential equation. The PDE includes the asymptotically uniform tangential redistribution of curve grid points. We present results for macrophage trajectory smoothing and define a method to compute the cell velocity for the discrete points on the smoothed curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信